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Preface

Nowadays data accumulate at an alarming speed in various storage devices,
and so does valuable information. However, it is difficult to understand in-
formation hidden in data without the aid of data analysis techniques, which
has provoked extensive interest in developing a field separate from machine
learning. This new field is data mining.

Data mining has successfully provided solutions for finding information
from data in bioinformatics, pharmaceuticals, banking, retail, sports and en-
tertainment, etc. It has been one of the fastest growing fields in the computer
industry. Many important problems in science and industry have been ad-
dressed by data mining methods, such as neural networks, fuzzy logic, decision
trees, genetic algorithms, and statistical methods.

This book systematically presents how to utilize fuzzy neural networks,
multi-layer perceptron (MLP) neural networks, radial basis function (RBF)
neural networks, genetic algorithms (GAs), and support vector machines
(SVMs) in data mining tasks. Fuzzy logic mimics the imprecise way of reason-
ing in natural languages and is capable of tolerating uncertainty and vague-
ness. The MLP is perhaps the most popular type of neural network used
today. The RBF neural network has been attracting great interest because
of its locally tuned response in RBF neurons like biological neurons and its
global approximation capability. This book demonstrates the power of GAs in
feature selection and rule extraction. SVMs are well known for their excellent
accuracy and generalization abilities.

We will describe data mining systems which are composed of data pre-
processing, knowledge-discovery models, and a data-concept description. This
monograph will enable both new and experienced data miners to improve their
practices at every step of data mining model design and implementation.

Specifically, the book will describe the state of the art of the following
topics, including both work carried out by the authors themselves and by
other researchers:
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• Data mining tools, i.e., neural networks, support vector machines, and
genetic algorithms with application to data mining tasks.

• Data mining tasks including data dimensionality reduction, classification,
and rule extraction.

Lipo Wang wishes to sincerely thank his students, especially Feng Chu,
Yakov Frayman, Guosheng Jin, Kok Keong Teo, and Wei Xie, for the great
pleasure of collaboration, and for carrying out research and contributing to
this book. Thanks are due to Professors Zhiping Lin, Kai-Ming Ting, Chunru
Wan, Ron (Zhengrong) Yang, Xin Yao, and Jacek M. Zurada for many helpful
discussions and for the opportunities to work together. Xiuju Fu wishes to
express gratitude to Dr. Gih Guang Hung, Liping Goh, Professors Chongjin
Ong and S. Sathiya Keerthi for their discussions and supports in the research
work. We also express our appreciation for the support and encouragement
from Professor L.C. Jain and Springer Editor Ralf Gerstner.

Singapore, Lipo Wang
May 2005 Xiuju Fu
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Introduction

This book is concerned with the challenge of mining knowledge from data.
The world is full of data. Some of the oldest written records on clay tablets
are dated back to 4000 BC. With the creation of paper, data had been stored
in myriads of books and documents. Today, with increasing use of computers,
tremendous volumes of data have filled hard disks as digitized information. In
the presence of the huge amount of data, the challenge is how to truly under-
stand, integrate, and apply various methods to discover and utilize knowledge
from data. To predict future trends and to make better decisions in science,
industry, and markets, people are starved for discovery of knowledge from this
morass of data.

Though ‘data mining’ is a new term proposed in recent decades, the tasks
of data mining, such as classification and clustering, have existed for a much
longer time. With the objective to discover unknown patterns from data,
methodologies of data mining are derived from machine learning, artificial
intelligence, and statistics, etc. Data mining techniques have begun to serve
fields outside of computer science and artificial intelligence, such as the busi-
ness world and factory assembly lines. The capability of data mining has been
proven in improving marketing campaigns, detecting fraud, predicting diseases
based on medical records, etc.

This book introduces fuzzy neural networks (FNNs), multi-layer percep-
tron neural networks (MLPs), radial basis function (RBF) neural networks,
genetic algorithms (GAs), and support vector machines (SVMs) for data min-
ing. We will focus on three main data mining tasks: data dimensionality reduc-
tion (DDR), classification, and rule extraction. For more data mining topics,
readers may consult other data mining text books, e.g., [129][130][346].

A data mining system usually enables one to collect, store, access, process,
and ultimately describe and visualize data sets. Different aspects of data min-
ing can be explored independently. Data collection and storage are sometimes
not included in data mining tasks, though they are important for data min-
ing. Redundant or irrelevant information exists in data sets, and inconsistent
formats of collected data sets may disturb the processes of data mining, even
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mislead search directions, and degrade results of data mining. This happens
because data collectors and data miners are usually not from the same group,
i.e., in most cases, data are not originally prepared for the purpose of data
mining. Data warehouse is increasingly adopted as an efficient way to store
metadata. We will not discuss data collection and storage in this book.

1.1 Data Mining Tasks

There are different ways of categorizing data mining tasks. Here we adopt the
categorization which captures the processes of a data mining activity, i.e., data
preprocessing, data mining modelling, and knowledge description. Data pre-
processing usually includes noise elimination, feature selection, data partition,
data transformation, data integration, and missing data processing, etc. This
book introduces data dimensionality reduction, which is a common technique
in data preprocessing. fuzzy neural networks, multi-layer neural networks,
RBF neural networks, and support vector machines (SVMs) are introduced
for classification and prediction. And linguistic rule extraction techniques for
decoding knowledge embedded in classifiers are presented.

1.1.1 Data Dimensionality Reduction

Data dimensionality reduction (DDR) can reduce the dimensionality of the hy-
pothesis search space, reduce data collection and storage costs, enhance data
mining performance, and simplify data mining results. Attributes or features
are variables of data samples and we consider the two terms interchangeable
in this book.

One category of DDR is feature extraction, where new features are derived
from the original features in order to increase computational efficiency and
classification accuracy. Feature extraction techniques often involve non-linear
transformation [60][289]. Sharma et al. [289] transformed features non-linearly
using a neural network which is discriminatively trained on the phonetically
labelled training data. Coggins [60] had explored various non-linear transfor-
mation methods, such as folding, gauge coordinate transformation, and non-
linear diffusion, for feature extraction. Linear discriminant analysis (LDA)
[27][168][198] and principal components analysis (PCA) [49][166] are two pop-
ular techniques for feature extraction. Non-linear transformation methods are
good in approximation and robust for dealing with practical non-linear prob-
lems. However, non-linear transformation methods can produce unexpected
and undesirable side effects in data. Non-linear methods are often not invert-
ible, and knowledge learned by applying a non-linear transformation method
in one feature space might not be transferable to the next feature space. Fea-
ture extraction creates new features, whose meanings are difficult to interpret.

The other category of DDR is feature selection. Given a set of original
features, feature selection techniques select a feature subset that performs the
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best for induction systems, such as a classification system. Searching for the
optimal subset of features is usually difficult, and many problems of feature
selection have been shown to be NP-hard [21]. However, feature selection tech-
niques are widely explored because of the easy interpretability of the features
selected from the original feature set compared to new features transformed
from the original feature set. Lots of applications, including document classi-
fication, data mining tasks, object recognition, and image processing, require
aid from feature selection for data preprocessing.

Many feature selection methods have been proposed in the literature. A
number of feature selection methods include two parts: (1) a ranking criterion
for ranking the importance of each feature or subsets of features, (2) a search
algorithm, for example backward or forward search. Search methods in which
features are iteratively added (‘bottom-up’) or removed (‘top-down’) until
some termination criterion is met are referred to as sequential methods. For
instance, sequential forward selection (SFS) [345] and sequential backward se-
lection (SBS) [208] are typical sequential feature selection algorithms. Assume
that d is the number of features to be selected, and n is the number of original
features. SFS is a bottom-up approach where one feature which satisfies some
criterion function is added to the current feature subset at a time until the
number of features reaches d. SBS is a top-down approach where features are
removed from the entire feature set one by one until D−d features have been
deleted. In both the SFS algorithm and the SBS algorithm, the number of fea-
ture subsets that have to be inspected is n+(n−1)+(n−2)+ · · ·+(n−d+1).
However, the computational burden of SBS is higher than SFS, since the di-
mensionality of inspected feature subsets in SBS is greater than or equal to d.
For example, in SBS, all feature subsets with dimension n − 1 are inspected
first. The dimensionality of inspected feature subsets is at most equal to d in
SFS.

Many feature selection methods have been developed based on traditional
SBS and SFS methods. Different criterion functions including or excluding a
subset of features to the selected feature set are explored. By ranking each
feature’s importance level in separating classes, only n feature subsets are
inspected for selecting the final feature subset. Compared to evaluating all
feature combinations, ranking individual feature importance can reduce com-
putational cost, though better feature combinations might be missed in this
kind of approach. When computational cost is too heavy to stand, feature
selection based on ranking individual feature importance is a preference.

Based on an entropy attribute ranking criterion, Dash et al. [71] removed
attributes from the original feature set one by one. Thus only n feature sub-
sets have to be inspected in order to select a feature subset, which leads to
a high classification accuracy. And, there is no need to determine the num-
ber of features selected in advance. However, the class label information is
not utilized in Dash et al.’s method. The entropy measure was used in [71] for
ranking attribute importance. The class label information is critical for detect-
ing irrelevant or redundant attributes. It motivates us to utilize the class label
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information for feature selection, which may lead to better feature selection
results, i.e., smaller feature subsets with higher classification accuracy.

Genetic algorithms (GAs) are used widely in feature selection [44][322][351].
In a GA feature selection method, a feature subset is represented by a binary
string with length n. A zero or one in position i indicates the absence or
presence of feature i in the feature subset. In the literature, most feature se-
lection algorithms select a general feature subset (class-independent features)
[44][123][322] for all classes. Actually, a feature may have different discrim-
inatory capability for distinguishing different classes from other classes. For
discriminating patterns of a certain class from other patterns, a multi-class
data set can be considered as a two-class data set, in which all the other
classes are treated as one class against the current processed class. For exam-
ple, there is a data set containing the information of ostriches, parrots, and
ducks. The information of the three kinds of birds includes weight, feather
color (colorful or not), shape of mouth, swimming capability (whether it can
swim or not), flying capability (whether it can fly or not), etc. According to
the characteristics of each bird, the feature ‘weight’ is sufficient for separating
ostriches from the other birds, the feature ‘feather color’ can be used to dis-
tinguish parrots from the other birds, and the feature ‘swimming capability’
can separate ducks from the other birds.

Thus, it is desirable to obtain individual feature subsets for the three
kinds of birds by class-dependent feature selection, which separates each one
from others better than using a general feature subset. The individual char-
acteristics of each class can be highlighted by class-dependent features. Class-
dependent feature selection can also facilitate rule extraction, since lower di-
mensionality leads to more compact rules.

1.1.2 Classification and Clustering

Classification and clustering are two data mining tasks with close relation-
ships. A class is a set of data samples with some similarity or relationship
and all samples in this class are assigned the same class label to distinguish
them from samples in other classes. A cluster is a collection of objects which
are similar locally. Clusters are usually generated in order to further classify
objects into relatively larger and meaningful categories.

Given a data set with class labels, data analysts build classifiers as predic-
tors for future unknown objects. A classification model is formed first based on
available data. Future trends are predicted using the learned model. For exam-
ple, in banks, individuals’ personal information and historical credit records
are collected to build a model which can be used to classify new credit appli-
cants into categories of low, medium, or high credit risks. In other cases, with
only personal information of potential customers, for example, age, education
levels, and range of salary, data miners employ clustering techniques to group
the clusters according to some similarities and further label the customers
into low, medium, or high levels for later targeted sales.
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In general, clustering can be employed for dealing with data without class
labels. Some classification methods cluster data into small groups first before
proceeding to classification, e.g. in the RBF neural network. This will be
further discussed in Chap. 4.

1.1.3 Rule Extraction

Rule extraction [28][150][154][200] seeks to present data in such a way that
interpretations are actionable and decisions can be made based on the knowl-
edge gained from the data. For data mining clients, they expect a simple
explanation of why there are certain classification results: what is going on
in a high-dimensional database, and which feature affects data mining results
significantly, etc. For example, a succinct description of a market behavior
is useful for making decisions in investment. A classifier learns from training
data and stores learned knowledge into the classifier parameters, such as the
weights of a neural network classifier. However, it is difficult to interpret the
knowledge in an understandable format by the classifier parameters. Hence,
it is desirable to extract IF–THEN rules to represent valuable information in
data.

Rule extraction can be categorized into two major types. One is concerned
with the relationship between input attributes and output class labels in la-
belled data sets. The other is association rule mining, which extracts rela-
tionships between attributes in data sets which may not have class labels.
Association rule extraction techniques are usually used to discover relation-
ships between items in transaction data. An association rule is expressed as
‘X ⇒ Z’, where X and Z are two sets of items. ‘X ⇒ Z’ represents that if a
transaction T ∈ D contains X, then the transaction also contains Z, where D
is the transaction data set. A confidence parameter, which is the conditional
probability p(Z ∈ T | X ∈ T ) [137], is used to evaluate the rule accuracy.
The association rule mining can be applied for analyzing supermarket trans-
actions. For example, ‘A customer who buys butter will also buy bread with a
certain probability’. Thus, the two associated items can be arranged in close
proximity to improve sales according to this discovered association rule. In
the rule extraction part of this book, we focus on the first type of rule extrac-
tion, i.e., rule extraction based on classification models. Usually, association
rule extraction can be treated as the first category of rule extraction, which is
based on classification. For example, if an association rule task is to inspect
what items are apt to be bought together with a particular item set X, the
item set X can be used as class labels. The other items in a transaction T
are treated as attributes. If X occurs in T , the class label is 1, otherwise it
is labelled 0. Then, we could discover the items associated with the occur-
rence of X, and also the non-occurrence of X. The association rules can be
equally extracted based on classification. The classification accuracy can be
considered as the rule confidence.
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RBF neural networks are functionally equivalent to fuzzy inference systems
under some restrictions [160]. Each hidden neuron could be considered as a
fuzzy rule. In addition, fuzzy rules could be obtained by combining fuzzy logic
with our crisp rule extraction system. In Chap. 3, fuzzy rules are presented. For
crisp rules, there are three kinds of rule decision boundaries found in the liter-
ature [150][154][200][214]: hyper-plane, hyper-ellipse, and hyper-rectangular.
Compared to the other two rule decision boundaries, a hyper-rectangular de-
cision boundary is simpler and easier to understand. Take a simple example;
when judging whether a patient gets a high fever, his body temperature is
measured and a given temperature range is preferred to a complex function
of the body temperature. Rules with a hyper-rectangular decision boundary
are more understandable for data mining clients. In the RBF neural network
classifier, the input data space is separated into hyper-ellipses, which facili-
tates the extraction of rules with hyper-rectangular decision boundaries. We
also describe crisp rules in Chap. 7 and Chap. 10 of this book.

1.2 Computational Intelligence Methods for Data
Mining

1.2.1 Multi-layer Perceptron Neural Networks

Neural network classifiers are very important tools for data mining. Neural
interconnections in the brain are abstracted and implemented on digital com-
puters as neural network models. New applications and new architectures of
neural networks (NNs) are being used and further investigated in companies
and research institutes for controlling costs and deriving revenue in the mar-
ket. The resurgence of interest in neural networks has been fuelled by the
success in theory and applications.

A typical multi-layer perceptron (MLP) neural network shown in Fig. 1.1 is
most popular in classification. A hidden layer is required for MLPs to classify
linearly inseparable data sets. A hidden neuron in the hidden layer is shown
in Fig. 1.2.

The jth output of a feedforward MLP neural network is:

yj = f(
K∑

i=1

W
(2)
ij φi(x) + b

(2)
j ), (1.1)

where W
(2)
ij is the weight connecting hidden neuron i with output neuron j.

K is the number of hidden neurons. b
(2)
j is the bias of output neuron j. φi(x)

is the output of hidden neuron i. x is the input vector.

φi(x) = f(W(1)
i · x + b

(1)
i ), (1.2)
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Fig. 1.1. A two-layer MLP neural network with a hidden layer and an output layer.
The input nodes do not carry out any processing.
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Fig. 1.2. A hidden neuron of the MLP.

where W(1)
i is the weight vector connecting the input vector with hidden

neuron i. b
(1)
i is the bias of hidden neuron i.

A common activation function f is a sigmoid function. The most common
of the sigmoid functions is the logistic function:

f(z) =
1

1 + e−βz
. (1.3)

where β is the gain.
Another sigmoid function often used in MLP neural networks is the hy-

perbolic tangent function that takes on values between −1 and 1:
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f(z) =
eβz − e−βz

eβz + e−βz
, (1.4)

There are many training algorithms for MLP neural networks. As sum-
marized in [63][133], the training algorithms include: (1) gradient descent er-
ror back-propagation, (2) gradient descent with adaptive learning rate back-
propagation, (3) gradient descent with momentum and adaptive learning
rate back-propagation, (4) Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-
Newton back-propagation, (5) bayesian regularization back-propagation, (6)
conjugate gradient back-propagation with Powell–Beale restarts, (7) conjugate
gradient back-propagation with Fletcher–Reeves updates, (8) conjugate gra-
dient back-propagation with Polak–Ribiere updates, (9) scaled conjugate gra-
dient back-propagation, (10) the Levenberg–Marquardt algorithm, and (11)
one–step secant back-propagation.

1.2.2 Fuzzy Neural Networks

Symbolic techniques and crisp (non-fuzzy) neural networks have been widely
used for data mining. Symbolic models are represented as either sets of ‘IF–
THEN’ rules or decision trees generated through symbolic inductive algo-
rithms [30][251]. A crisp neural model is represented as an architecture of
threshold elements connected by adaptive weights. There have been exten-
sive research results on extracting rules from trained crisp neural networks
[110][116][200][297][313][356]. For most noisy data, crisp neural networks lead
to more accurate classification results.

Fuzzy neural networks (FNNs) combine the learning and computational
power of crisp neural networks with human-like descriptions and reasoning of
fuzzy systems [174][218][235][268][336][338]. Since fuzzy logic has an affinity
with human knowledge representation, it should become a key component of
data mining systems. A clear advantage of using fuzzy logic is that we can
express knowledge about a database in a manner that is natural for people
to comprehend. Recently, there has been much research attention devoted to
rule generation using various FNNs. Rather than attempting an exhaustive
literature survey in this area, we will concentrate below on some work directly
related to ours, and refer readers to a recent review by Mitra and Hayashi [218]
for more references.

In the literature, crisp neural networks often have a fixed architecture, i.e.,
a predetermined number of layers with predetermined numbers of neurons.
The weights are usually initialized to small random values. Knowledge-based
networks [109][314] use crude domain knowledge to generate the initial net-
work architecture. This helps in reducing the search space and time required
for the network to find an optimal solution. There have also been mechanisms
to generate crisp neural networks from scratch, i.e., initially there are no neu-
rons or weights, which are generated and then refined during training. For
example, Mezard and Nadal’s tiling algorithm [216], Fahlman and Lebiere’s
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cascade correlation [88], and Giles et al.’s constructive learning of recurrent
networks [118] are very useful.

For FNNs, it is also desirable to shift from the traditional fixed architecture
design methodology [143][151][171] to self-generating approaches. Higgins and
Goodman [135] proposed an algorithm to create a FNN according to input
data. New membership functions are added at the point of maximum error
on an as-needed basis, which will be adopted in this book. They then used
an information-theoretic approach to simplify the rules. In contrast, we will
combine rules using a computationally more efficient approach, i.e., a fuzzy
similarity measure.

Juang and Lin [165] also proposed a self-constructing FNN with online
learning. New membership functions are added based on input–output space
partitioning using a self-organizing clustering algorithm. This membership
creation mechanism is not directly aimed at minimizing the output error as
in Higgins and Goodman [135]. A back-propagation-type learning procedure
was used to train network parameters. There were no rule combination, rule
pruning, or eliminations of irrelevant inputs.

Wang and Langari [335] and Cai and Kwan [41] used self-organizing clus-
tering approaches [267] to partition the input/output space, in order to deter-
mine the number of rules and their membership functions in a FNN through
batch training. A back-propagation-type error-minimizing algorithm is often
used to train network parameters in various FNNs with batch training [160],
[151].

Liu and Li [197] applied back-propagation and conjugate gradient methods
for the learning of a three-layer regular feedforward FNN [37]. They developed
a theory for differentiating the input–output relationship of the regular FNN
and approximately realized a family of fuzzy inference rules and some given
fuzzy functions.

Frayman and Wang [95][96] proposed a FNN based on the Higgins-
Goodman model [135]. This FNN has been successfully applied to a variety of
data mining [97] and control problems [94][98][99]. We will describe this FNN
in detail later in this book.

1.2.3 RBF Neural Networks

The RBF neural network [91][219] is widely used for function approximation,
interpolation, density estimation, classification, etc. For detailed theory and
applications of other types of neural networks, readers may consult various
textbooks on neural networks, e.g., [133][339].

RBF neural networks were first proposed in [33][245]. RBF neural networks
[22] are a special class of neural networks in which the activation of a hidden
neuron (hidden unit) is determined by the distance between the input vector
and a prototype vector. Prototype vectors refer to centers of clusters obtained
during RBF training. Usually, three kinds of distance metrics can be used in



10 1 Introduction

RBF neural networks, such as Euclidean, Manhattan, and Mahalanobis dis-
tances. Euclidean distance is used in this book. In comparison, the activation
of an MLP neuron is determined by a dot-product between the input pat-
tern and the weight vector of the neuron. The dot-product is equivalent to
the Euclidean distance only when the weight vector and all input vectors are
normalized, which is not the case in most applications.

Usually, the RBF neural network consists of three layers, i.e., the in-
put layer, the hidden layer with Gaussian activation functions, and the out-
put layer. The architecture of the RBF neural network is shown in Fig.
1.3. The RBF neural network provides a function Y : Rn → RM , which
maps n-dimensional input patterns to M -dimensional outputs ({(Xi, Yi) ∈
Rn × RM , i = 1, 2, ..., N}). Assume that there are M classes in the data set.
The mth output of the network is as follows:

ym(X) =
K∑

j=1

wmjøj(X) + wm0bm. (1.5)

Here X is the n-dimensional input pattern vector, m = 1, 2, ..., M , and K is
the number of hidden units. M is the number of classes (outputs). wmj is the
weight connecting the jth hidden unit to the mth output node. bm is the bias.
wm0 is the weight connecting the bias and the mth output node.
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Fig. 1.3. Architecture of an RBF neural network. ( c© 2005 IEEE) We thank the
IEEE for allowing the reproduction of this figure, first appeared in [104].
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The radial basis activation function ø(x) of the RBF neural network dis-
tinguishes it from other types of neural networks. Several forms of activation
functions have been used in applications:

1.
ø(x) = e−x2/2σ2

, (1.6)

2.
ø(x) = (x2 + σ2)

−β
, β > 0, (1.7)

3.
ø(x) = (x2 + σ2)

β
, β > 0, (1.8)

4.
ø(x) = x2ln(x); (1.9)

here σ is a parameter that determines the smoothness properties of the inter-
polating function.

The Gaussian kernel function and the function (Eq. (1.7)) are localized
functions with the property that ø → 0 as |x| → ∞. One-dimensional Gaussian
function is shown in Fig. 1.4. The other two functions (Eq. (1.8), Eq. (1.9))
have the property that ø → ∞ as |x| → ∞.
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Fig. 1.4. Bell-shaped Gaussian Profile: The kernel possesses the highest response
at the center x = 5 and degrades to zero quickly

In this book, the activation function of RBF neural networks is the
Gaussian kernel function. øj(X) is the activation function of the jth hidden
unit:

øj(X) = e−||X−Cj||2/2σj
2
, (1.10)
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where Cj and σj are the center and the width for the jth hidden unit, re-
spectively, which are adjusted during learning. When calculating the distance
between input patterns and centers of hidden units, Euclidean distance mea-
sure is employed in most RBF neural networks.

RBF neural networks are able to make an exact interpolation by pass-
ing through every data point {Xi, Yi}. In practice, noise is often present in
data sets and an exact interpolation may not be desirable. Proomhead and
Lowe [33] proposed a new RBF neural network model to reduce computational
complexity, i.e., the number of radial basis functions. In [219], a smooth in-
terpolating function is generated by the RBF network with a reduced number
of radial basis functions.

Consider the following two major function approximation problems:
(a) target functions are known. The task is to approximate the known

function by simpler functions, such as Gaussian functions,
(b) target functions are unknown but a set of samples {x, y(x)} are given.

The task is to approximate the function y.
RBF neural networks with free adjustable radial basis functions or proto-

type vectors are universal approximators, which can approximate any contin-
uous function with arbitrary precision if there are sufficient hidden neurons
[237][282]. The domain of y can be a finite set or an infinite set. If the domain
of y is a finite set, RBF neural networks deal with classification problems
[241].

The RBF neural network as a classifier differs from the RBF neural net-
work as an interpolation tool in the following aspects [282]:

1. The number of kernel functions in an RBF classifier model is usually much
fewer than the number of input patterns. The kernel functions are located
in the centers of clusters of RBF classifiers. The clusters separate the input
space into subspaces with hyper-ellipse boundaries.

2. In the approximation task, a global scaling parameter σ is used for all
kernel functions. However, in the classification task, different σ’s are em-
ployed for different radial basis kernel functions.

3. In RBF network classifier models, three types of distances are often used.
The Euclidean distance is usually employed in function approximation.

Generalization and the learning abilities are important issues in both func-
tion approximation and classification tasks. An RBF neural network can attain
no errors for a given training data set if the RBF network has as many hidden
neurons as the training patterns. However, the size of the network may be
too large when tackling large data sets and the generalization ability of such
a large RBF network may be poor. Smaller RBF networks may have better
generalization ability; however, too small a RBF neural network will perform
poorly on both training and test data sets. It is desirable to determine a train-
ing method which takes the learning ability and the generalization ability into
consideration at the same time.

Three training schemes for RBF networks [282] are as follows:
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• One-stage training
In this training procedure, only the weights connecting the hidden layer
and the output layer are adjusted through some kind of supervised meth-
ods, e.g., minimizing the squared difference between the RBF neural net-
work’s output and the target output. The centers of hidden neurons are
subsampled from the set of input vectors (or all data points are used as
centers) and, typically, all scaling parameters of hidden neurons are fixed
at a predefined real value [282] typically.

• Two-stage training
Two-stage training [17][22][36][264] is often used for constructing RBF
neural networks. At the first stage, the hidden layer is constructed by
selecting the center and the width for each hidden neuron using various
clustering algorithms. At the second stage, the weights between hidden
neurons and output neurons are determined, for example by using the lin-
ear least square (LLS) method [22]. For example, in [177][280], Kohonen’s
learning vector quantization (LVQ) was used to determine the centers of
hidden units. In [219][281], the k-means clustering algorithm with the se-
lected data points as seeds was used to incrementally generate centers for
RBF neural networks. Kubat [183] used C.4.5 to determine the centers
of RBF neural networks. The width of a kernel function can be chosen
as the standard deviation of the samples in a cluster. Murata et al. [221]
started with a sufficient number of hidden units and then merged them to
reduce the size of an RBF neural network. Chen et al. [48][49] proposed
a constructive method in which new RBF kernel functions were added
gradually using an orthogonal least square learning algorithm (OLS). The
weight matrix is solved subsequently [48][49].

• Three-stage training
In a three-stage training procedure [282], RBF neural networks are ad-
justed through a further optimization after being trained using a two-
stage learning scheme. In [73], the conventional learning method was used
to generate the initial RBF architecture, and then the conjugate gradi-
ent method was used to tune the architecture based on the quadratic loss
function.

An RBF neural network with more than one hidden layer is also presented
in the literature. It is called the multi-layer RBF neural network [45]. However,
an RBF neural network with multiple layers offers little improvement over the
RBF neural network with one hidden layer. The inputs pass through an RBF
neural network and form subspaces of a local nature. Putting a second hidden
layer after the first hidden layer will lead to the increase of the localization
and the decrease of the valid input signal paths accordingly [138]. Hirasawa
et al. [138] showed that it was better to use the one-hidden-layer RBF neural
network than using the multi-layer RBF neural network.

Given N patterns as a training data set, the RBF neural network classifier
may obtain 100% accuracy by forming a network with N hidden units, each of
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which corresponds to a training pattern. However, the 100% accuracy in the
training set usually cannot lead to a high classification accuracy in the test
data set (the unknown data set). This is called the generalization problem. An
important question is: ‘how do we generate an RBF neural network classifier
for a data set with the fewest possible number of hidden units and with the
highest possible generalization ability?’.

The number of radial basis kernel functions (hidden units), the centers
of the kernel functions, the widths of the kernel functions, and the weights
connecting the hidden layer and the output layer constitute the key para-
meters of an RBF classifier. The question mentioned above is equivalent to
how to optimally determine the key parameters. Prior knowledge is required
for determining the so-called ‘sufficient number of hidden units’. Though the
number of the training patterns is known in advance, it is not the only element
which affects the number of hidden units. The data distribution is another el-
ement affecting the architecture of an RBF neural network. We explore how
to construct a compact RBF neural network in the latter part of this book.

1.2.4 Support Vector Machines

Support vector machines (SVMs) [62][326][327] have been widely applied to
pattern classification problems [46][79][148][184][294] and non-linear regres-
sions [230][325]. SVMs are usually employed in pattern classification problems.
After SVM classifiers are trained, they can be used to predict future trends.
We note that the meaning of the term prediction is different from that in some
other disciplines, e.g., in time-series prediction where prediction means guess-
ing future trends from past information. Here, ‘prediction’ means supervised
classification that involves two steps. In the first step, an SVM is trained as
a classifier with a part of the data in a specific data set. In the second step
(i.e., prediction), we use the classifier trained in the first step to classify the
rest of the data in the data set.

The SVM is a statistical learning algorithm pioneered by Vapnik [326][327].
The basic idea of the SVM algorithm [29][62] is to find an optimal hyper-plane
that can maximize the margin (a precise definition of margin will be given
later) between two groups of samples. The vectors that are nearest to the
optimal hyper-plane are called support vectors (vectors with a circle in Fig.
1.5) and this algorithm is called a support vector machine. Compared with
other algorithms, SVMs have shown outstanding capabilities in dealing with
classification problems. This section briefly describes the SVM.

Linearly Separable Patterns

Given l input vectors {xi ∈ Rn, i = 1, ..., l} that belong to two classes, with
desired output yi ∈ {−1, 1}, if there exists a hyper-plane

wTx + b = 0 (1.11)
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Fig. 1.5. An optimal hyper-plane for classification in a two-dimensional case, for
(a) linearly separable patterns and (b) linearly non-separable patterns.

that separates the two classes, that is,

wTxi + b ≥ 0, for all i with yi = +1, (1.12)

wTxi + b < 0, for all i with yi = −1, (1.13)

then we say that these patterns are linearly separable. Here w is a weight
vector and b is a bias. By rescaling w and b properly, we can change the two
inequalities above to:

wTxi + b ≥ 1, for all i with yi = +1, (1.14)

wTxi + b ≤ −1, for all i with yi = −1. (1.15)

Or,

yi(wTxi + b) ≥ −1. (1.16)

There are two parallel hyper-planes:

H 1: wTx + b = 1, (1.17)

H 2: wTx + b = −1. (1.18)

The distance ρ between H 1 and H 2 is defined as the margin between the two
classes (Fig. 1.5a). According to the standard result of the distance between
the origin and a hyper-plane, we can figure out that the distances between
the origin and H 1 and H 2 are |b− 1|/||w|| and |b+1|/||w||, respectively. The
sum of these two distances is ρ, because H 1 and H 2 are parallel. Therefore,

ρ = 2/||w||. (1.19)
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The objective is to maximize the margin between the two classes, i.e., to
minimize ||w||. This objective is equivalent to minimizing the cost function:

ψ =
1
2
||w||2. (1.20)

Then, this optimization problem subject to the constraint (1.16) can be solved
using Lagrange multipliers. The Lagrange function is

L(w, b, α) =
1
2
||w||2 −

l∑
i=1

αi[yi(wTxi + b) − 1], (1.21)

where αi, i = 1, 2, ..., l are the Lagrange multipliers. Differentiating this La-
grange function, we obtain

∂L(w, b, α)
∂w

= 0, (1.22)

∂L(w, b, α)
∂α

= 0. (1.23)

Considering the Wolfe’s dual [89], we can obtain a dual problem of the primal
one:

maximize: Q(α) =
l∑

i=1

αi − 1
2

l∑
i=1

l∑
j=1

αiαjyiyjxTx, (1.24)

subject to:

l∑
i=1

αiyi = 0, (1.25)

αi ≥ 0. (1.26)

From this dual problem, the optimal weight vector, i.e., wo and the optimal
Lagrange multipliers, i.e., αo,i of the optimal hyper-plane can be obtained:

wo =
l∑

i=1

αo,iyixi. (1.27)

Linearly Non-separable Patterns

If the vectors {xi ∈ Rn, i = 1, ..., l} cannot be linearly separated, we would
like to slacken the constraints described by (1.16). Here we introduce a group
of slack variables, i.e., ξi:

yi(wTxi + b) ≥ 1 − ξi, (1.28)
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Fig. 1.6. The influence of C on the performance of the classifier. (a) a classifier with
a large C (small margin); (b) an overfitting classifier; (c) a classifier with a small C
(large margin); (d) a classifier with a proper C.

ξi ≥ 0. (1.29)

In fact, ξi is the distance between the training example xi and the optimal
hyper-plane (Fig. 1.5b). For 0 ≤ ξi ≤ 1, xi falls in the region between the
two hyper-planes, i.e., H 1 and H 2, but on the correct side of the optimal
hyper-plane. However, for ξi > 1, xi falls on the wrong side of the optimal
hyper-plane.

Since it is expected that the optimal hyper-plane can maximize the margin
between the two classes and minimize the errors, the cost function from Eq.
(1.20) is rewritten:

ψ =
1
2
||w||2 + C

l∑
i=1

ξi, (1.30)

where C is a positive factor. This cost function must satisfy the constraints
Eq. (1.28) and Eq. (1.29). There is also a dual problem:

maximize: Q(α) =
l∑

i=1

αi − 1
2

l∑
i=1

l∑
j=1

αiαjyiyjxTx, (1.31)



18 1 Introduction

subject to:

l∑
i=1

αiyi = 0, (1.32)

C ≥ αi ≥ 0. (1.33)

From this dual problem, the optimal weight vector, i.e., wo and the optimal
Lagrange multipliers, i.e., αo,i of the optimal hyper-plane can be obtained.
They are the same as their counterparts in Eq. (1.27), except that the con-
straints change to Eq. (1.32) and (1.33).

In general, C controls the trade-off between the two goals of the binary
SVM, i.e., to maximize the margin between the two classes and to separate
the two classes well. When C is small, the margin between the two classes is
large, but it may make more mistakes in training patterns. Or, alternatively,
when C is large, the SVM is likely to make fewer mistakes in training pat-
terns; however, the small margin makes the network vulnerable for overfitting.
Figure 1.6 depicts the functionality of the parameter C, which has a relatively
large impact on the performance of the SVM. Usually, it is determined exper-
imentally for a given problem.

A Binary Non-linear SVM Classifier

According to [65], if a non-linear transformation can map the input feature
space into a new feature space whose dimension is high enough, the classifica-
tion problem is more likely to be linearly solved in this new high-dimensional
space. In view of this theorem, the non-linear SVM algorithm performs such
a transformation to map the input feature space to a new space with much
higher dimension. Actually, other kernel learning algorithms, such as radial
basis function (RBF) neural networks, also perform such a transformation for
the same reason. After the transformation, the features in the new space are
classified using the optimal hyper-plane we constructed in the previous sec-
tions. Therefore, using this non-linear SVM to perform classification includes
the following two steps:

1. Mapping the input space into a much higher dimensional space with a
non-linear kernel function.

2. Performing classification in the new high-dimensional space by construct-
ing an optimal hyper-plane that is able to maximize the margin between
the two classes.

Combining the transformation and the linear optimal hyper-plane, we for-
mulate the mathematical descriptions of this non-linear SVM as follows.

It is supposed to find the optimal values of weight vector w and bias b
such that they satisfy the constraint:
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yi(wTφ(xi) + b) ≥ 1 − ξi, (1.34)

ξi ≥ 0. (1.35)

where φ(xi) is the function mapping the ith pattern vector to a potentially
much higher dimensional feature space. The weight vector w and the slack
variables ξi should minimize the cost function:

ψ =
1
2
||w||2 + C

l∑
i=1

ξi, (1.36)

This optimization problem is very similar to the problem we have dealt with
using a linear optimal hyper-plane. The only difference is that the input vec-
tors xi have been replaced by φ(xi).

To solve this optimization problem, a similar procedure is followed as be-
fore. Through constructing the Lagrange function and differentiating it, a dual
problem is obtained as below:

maximize: Q(α) =
l∑

i=1

αi − 1
2

l∑
i=1

l∑
j=1

αiαjyiyjK(xi,xj), (1.37)

subject to:

l∑
i=1

αiyi = 0, (1.38)

C ≥ αi ≥ 0, (1.39)

where K(xi,xj) is the kernel function:

K(xi,xj) = φ(xi)Tφ(xj). (1.40)

From this dual problem, the optimal weight vector i.e., wo and the optimal
Lagrange multipliers, i.e., αo,j of the optimal hyper-plane can be obtained:

wo =
l∑

i=1

αo,iyixi. (1.41)

The optimal hyper-plane that discriminates different classes is:

wT
o φ(x) + b = 0. (1.42)

One of the most commonly used kernel functions is the polynomial kernel:

K(x,xi) = (xTxi + 1)p, (1.43)
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where p is a constant specified by users. Another kind of widely used kernel
function is the radial basis function:

K(x,xi) = e−γ||x−xi||2 , (1.44)

where γ is also a constant specified by users. According to its mathematical
description, the structure of an SVM is shown in Fig. 1.7.

x1 x x

K(x, x1) K(x, xm)

y

Input x

Kernels

Output

Bias

K(x, xj)

Fig. 1.7. The structure of an SVM.

1.2.5 Genetic Algorithms

Genetic algorithms (GAs) are motivated by the natural evolutionary process.
The basic concepts in GAs are as follows. Solutions of the problem at hand
are encoded in chromosomes or individuals. An initial population of individ-
uals is generated at random or heuristically. The operators in GAs include
selection, crossover, and mutation. To generate a new generation, chromo-
somes are selected according to their fitness scores, i.e., a predefined quality
criterion used for evaluating solutions of a problem. The selection operator
gives preference to better individuals as parents for the next generation. The
crossover operator and the mutation operator are used to generate offspring
from the parents. A crossover site is randomly chosen in the parents. The two
bit strings in the two individuals are exchanged up to the crossover site. For
example, suppose that parents I1 = 0001100 and I2 = 1110000 are selected
for generating new offspring. After applying the crossover operator, we ob-
tain I ′1 = 0010100 and I ′2 = 1101000 with two crossover points at the third
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and fourth bits. By exchanging portions of good individuals, crossover may
produce even better individuals. The mutation operator is used to prevent
premature convergence to local optima. It is implemented by flipping bits at
random with a mutation probability.

GAs are specially useful under the following circumstances:

• the problem space is large, complex;
• prior knowledge is scarce;
• it is difficult to determine a machine learning model to solve the problem

due to complexities in constraints and objectives;
• traditional search methods perform badly.

The steps to apply the basic GA as a problem-solving model are as follows:

1. figure out a way to encode solutions of the problem according to domain
knowledge and required solution quality;

2. randomly generate an initial population of chromosomes which corre-
sponds to solutions of the problem;

3. calculate the fitness of each chromosome in the population pool;
4. select two parental chromosomes from the population pool to produce

offspring by crossover and mutation operators;
5. go to step 3, and iterate until an optimal solution is found.

The basic genetic algorithm is simple but powerful in solving problems in var-
ious areas. In addition, the basic GA could be modified to meet requirements
of diverse problems by tuning the basic operators. For a detailed discussion of
variations of the basic GA, as well as other techniques in a broader category
called evolutionary computation, see text books, such as [10][86].

1.3 How This Book is Organized

In Chap. 1, data mining tasks and conventional data mining methods are
introduced. Classification and clustering tasks are explained, with emphasis on
the classification task. An introduction to data mining methods is presented.

In Chap. 2, a wavelet multi-layer perceptron neural network is described
for predicting temporal sequences. The multi-layer perceptron neural network
has its input signal decomposed to various resolutions using a wavelet trans-
formation. The time frequency information which is normally hidden is ex-
posed by the wavelet transformation. Based on the wavelet transformation,
less important wavelets are eliminated. Compared with the conventional MLP
network, the wavelet MLP neural network has less performance swing sensi-
tivity to weight initialization. In addition, we describe a cost-sensitive MLP
in which errors in prediction are biased towards ‘important’ classes. Since dif-
ferent prediction errors in different classes usually lead to different costs, it
is worthwhile discussing the cost-sensitive problem. In experimental results,
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it is shown that the recognition rates for the ‘important’ classes (with higher
cost) are higher than the recognition rates for the ‘less important’ classes.

In Chap. 3, the FNN is described. This FNN that we proposed earlier com-
bines the powerful features of initial fuzzy model self-generation, fast input
selection, partition validation, parameter optimization, and rule-base simpli-
fication. The structure and learning procedure are introduced first. Then, we
describe the implementation and functionality of the FNN. Synthetic data-
bases and microarray data are used to demonstrate the fuzzy neural network
proposed earlier [59][349]. Experimental results are compared with the pruned
feedforward crisp neural network and decision tree approaches.

Chapter 4 describes how to construct an RBF neural network that allows
for large overlaps between clusters with the same class label, which reduces
the number of hidden units without degrading the accuracy of the RBF neural
network. In addition, we describe a new method dealing with unbalanced data.
The method is based on the modified RBF neural network. Weights inversely
proportional to the number of patterns of classes are given to each class in
the mean squared error (MSE) function.

In Chap. 5, DDR methods, including feature selection and feature extrac-
tion techniques, are reviewed first. A novel algorithm for attribute impor-
tance ranking, i.e., the separability and correlation measure (SCM), is then
presented. Class-separability measure and attribute-correlation measure are
weighted to produce a combined evaluation for relative attribute importance.
The top-down search and the bottom-up search are explored, and their differ-
ence in attribute ranking is presented. The attribute ranking algorithm with
class information is compared with other attribute ranking methods. Data
dimensionality is reduced based on attribute ranking results.

Data dimensionality reduction is then performed by combining the SCM
method and RBF classifiers. In the DDR method, there are a fewer number
of candidate feature subsets to be inspected compared with other methods,
since attribute importance is ranked first by the SCM method. The size of
a data set is reduced and the architecture of the RBF classifier is simplified.
Experimental results show the advantages of the DDR method.

In Chap. 6, reviews of existing class-dependent feature selection tech-
niques are presented first. The fact that different features might have different
discrimination capabilities for separating one class from the other classes is
adopted. For a multi-class classification problem, each class has its own spe-
cific feature subset as inputs of the RBF neural network classifier. The novel
class-dependent feature selection algorithm is based on RBF neural networks
and the genetic algorithm (GA).

In Chap. 7, reviews of rule extraction work in the literature are presented
first. Several new rule extraction methods are described based on the simplified
RBF neural network classifier in which large overlaps between clusters of the
same class are allowed. In the first algorithm, A GA combined with an RBF
neural network is used to extract rules. The GA is used to determine the
intervals of each attribute as the premise of the rules. In the second algorithm,
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rules are extracted directly based on simplified RBF neural networks using
gradient descent. In the third algorithm, the DDR technique is combined with
rule extraction. Rules with a fewer number of premises (attributes) and higher
rule accuracy are obtained. In the fourth algorithm, class-dependent feature
selection is used as a preprocessing procedure of rule extraction. The results
from the four algorithms are compared with other algorithms.

In Chap. 8, a hybrid neural network predictor is described for protein
secondary structure prediction (PSSP). The hybrid network is composed of
the RBF neural network and the MLP neural network. Experiments show that
the performance of the hybrid network has reached a comparable performance
with the existing leading method.

In Chap. 9, support vector machine classifiers are used to deal with two
bioinformatics problems, i.e., cancer diagnosis based on gene expression data
and protein secondary structure prediction.

Chapter 10 describes a rule extraction algorithm RulExSVM that we pro-
posed earlier [108]. Decisions made by a non-linear SVM classifier are decoded
into linguistic rules based on the support vectors and decision functions ac-
cording to a geometrical relationship.
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MLP Neural Networks for Time-Series
Prediction and Classification

2.1 Wavelet MLP Neural Networks for Time-series
Prediction

In this chapter, we investigate the effectiveness of wavelet multi-layer per-
ceptron (MLP) neural networks (NNs) for temporal sequence prediction. It
is essentially a neural network with the input signal decomposed to various
resolutions using wavelet transforms. Wavelet transforms can expose time-
frequency information that is normally hidden. We show that the wavelet
MLP network provides a prediction performance comparable to the conven-
tional MLP. After the less important inputs are eliminated, the wavelet MLP
shows more consistent performance for different weight initializations in com-
parison to the conventional MLP [303][332].

2.1.1 Introduction to Wavelet Multi-layer Neural Network

A time-series is a sequence of data that vary with time, for example, the
daily average temperature from the year 1995 to 2005. The task of time-series
prediction is to forecast future trend using the past values in the time-series.

There exist many approaches to time-series prediction. The oldest and
most studied method, a linear autoregression (AR), is to fit the data using
the following equation [47]:

y(k) =
T∑

i=1

a(i)y(k − i) + e(k) = ŷ(k) + e(k), (2.1)

where y(k) is the actual value of the time-series at time step k, a(i) is the

weight for time step i, and e(k) is the prediction error.
∧
y(k) is the predicted

value of y(k).
AR represents y(k) as a weighted sum of past values of the sequence. This

model can provide good performance only when the system under investiga-
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tion is linear or nearly linear. However, the performance may be very poor for
cases in which the system dynamics is highly non-linear.

NNs have demonstrated great potential for time-series prediction where
the system dynamics is non-linear. Lapedes and Farber [186] first studied
non-linear signal prediction using an MLP. It led to an explosive increase
in research activities in examining the approximation capabilities of MLPs
[132][340].

Artificial NNs were developed to emulate the human brain that is powerful,
flexible, and efficient. However, conventional networks process the signal only
at its finest resolution, which is not the case for the human brain. For example,
the retinal image is likely to be processed in separate frequency channels [205].

The introduction of wavelet decomposition [204][293] provides a new tool
for approximation. Inspired by both the MLP and wavelet decomposition,
Zhang and Benveniste [357] invented a new type of network, call a wavelet
network. This has caused rapid development of a new breed of neural network
models integrated with wavelets. Most researchers used wavelets as radial basis
functions that allow hierarchical, multi-resolution learning of input-output
maps from experimental data [15][52]. Liang and Page [193] proposed a new
learning concept and paradigm for a neural network, called multi-resolution
learning based on multi-resolution analysis in wavelet theory.

In this chapter, we use wavelets to break the signal down into its mul-
tiresolution components before feeding them into an MLP. We show that the
wavelet MLP neural network is capable of utilizing the time-frequency infor-
mation to improve its consistency in performance.

2.1.2 Wavelet

The wavelet theory provides a unified framework for a number of techniques
that had been developed independently for various signal-processing applica-
tions, e.g., multi-resolution signal processing used in computer vision, subband
coding developed for speech and image compression, and wavelet series expan-
sions developed in applied mathematics. In this section, we will concentrate
on the multi-resolution approximation to be discussed in this chapter.

Multi-resolution

Wavelet ψ can be constructed such that the dilated and translated family

{ψj,i(t) =
√

2jψ(2j(t − i))}(j,i) ∈ Z1, (2.2)

where ψ (mother wavelet) is an orthonormal basis of L2(R) and L2(R) denotes
the vector space of square-integrable, one-dimensional functions f(x). Let Vj

denote a closed subspace in L2(R). Orthogonal wavelets dilated by 2j carry
signal variations at resolution 2j . Thus a wavelet can be used to compute the
approximation of the signal at various resolutions with orthogonal projections



2.1 Wavelet MLP Neural Networks for Time-series Prediction 27

on different spaces {Vj}j∈Z . Each subspace contains the approximation of all
functions f(x) at resolution 2j . The approximation of the signal at resolution
2j+1 contains all information necessary to compute the signal at the lower
resolution. Thus, they are a set of nested vector subspaces,

· · · ⊂ Vj ⊂ Vj+1 ⊂ Vj+2 ⊂ · · · (2.3)

When computing the approximation of function f at resolution 2j , some
information about f is lost. As the resolution increases to infinity, the approx-
imate signal converges to the original signal. When the resolution approaches
zero, the signal vanishes. If Pvj denotes the orthogonal projection operator
from L2(R) onto Vj ,

lim
j→−∞

‖Pvj , f‖ = 0. (2.4)

On the other hand, when the resolution approaches +∞, the signal ap-
proximation converges to the original signal:

lim
j→+∞

‖f − Pvj , f‖ = 0. (2.5)

The limit (2.5) guarantees that the original signal can be reconstructed using
decomposed signals at a lower resolution.

Signal Decomposition

A tree algorithm can be used for computing the wavelet transform by using the
wavelet coefficients as filter coefficients. Assume that vector sm represents the
sampled signal f at the finest resolution 2m. A low-pass filter L is employed
to produce a coarser approximation at resolution 2m−1. Thus,

sj−1 = Lsj j = 1, 2, ..., m. (2.6)

The detailed signal dj at resolution 2j is obtained by applying a high-pass
filter H to sj . That is,

dj−1 = Hsj , j = 1, 2, ..., m. (2.7)

The process can be repeated to produce signals at any desired resolution
(Fig. 2.1).

The signal can be reconstructed using two synthesis filters L∗ and H∗ (the
transposed matrices of L and H, respectively). The reconstruction is given by
Fig. 2.2.

Hence, any original signal can be represented as

f = sm = s0 + d0 + d1 + · · · + dm−1 + dm. (2.8)
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Fig. 2.2. The reconstruction process.

2.1.3 Wavelet MLP Neural Network

Figure 2.3 shows the wavelet MLP neural network used in this chapter. The
input signal is passed through a tapped delay line to create short-term mem-
ory that retains aspects of the input sequence relevant to making predictions.
This is similar to a time-lagged MLP except that the delayed data is not sent
directly into the network. Instead, it is decomposed by a wavelet transform to
form the input of the MLP. Figure 2.4 shows an example of two-level decompo-
sition of the tapped delay data x. Data x is decomposed to coarser (CA1) and
detailed (CD1) approximations. The coarser approximation (CA1) is further
decomposed into its coarser (CA2) and detailed (CD2) approximations.

Furthermore, we are looking into the possibility of discarding certain
wavelet-decomposed data that is of little use in the mapping of input to out-
put. The mapping is expected to be highly non-linear and dependent on the
characteristics of the individual signal.



2.1 Wavelet MLP Neural Networks for Time-series Prediction 29

Fig. 2.3. Model of Network (WD=Wavelet Decomposition).

Let

si =
n∑

j=1

|wij |, (2.9)

represent the importance of input xi, where wij is the weighting of input i to
neuron j and n is the number of hidden neurons.

s′i =
s′i

max(si)
(2.10)

serves as an indicator of the relative importance of input xi. Here s′i is the
normalized input strength, max(si) is the maximum of s1, s2, . . . , sI , and I
is the number of inputs.

Input points having small s′i will be considered to be unimportant and
may be discarded without affecting the prediction performance.

2.1.4 Experimental Results

The Mackey-Glass time-series is frequently used as a benchmark in time-series
prediction.

The Mackey-Glass time-delay differential equation is defined by

dx(t)
dt

=
0.2x(t − φ)

(1 + x(t − φ))10
− 0.1x(t). (2.11)
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Fig. 2.4. The two-level decomposition to form an input to the neural network.

The MLP used in our simulations consists of an input layer, a hidden layer
of two neurons, and one output neuron, and is trained by a back-propagation
algorithm using the Levenberg-Marquardt algorithm for fast optimization
[127]. All neurons use a conventional sigmoid activation function; however,
the output neuron employed a linear activation function as frequently used in
forecasting applications.

In order to compare our result, the normalized mean squared error (NMSE)
is used to assess forecasting performance. The NMSE is computed as

NMSE =
1
σ2

1
N

N∑
t=1

[x(t) − x̂(t)]2, (2.12)

where x(t) is the actual value of the time-series, x̂(t) is the predicted value of
x(t), σ2 is the variance of the time-series over the predicting duration, and N
is the number of elements.

The data is divided into three parts for the training, validation, and testing,
respectively. The training data is of length 220, followed by validation and
testing data, each of length 30. Validation NMSE is evaluated every 20 epochs.
When there is an increase in the validation NMSE, training stops. Test data
is used to test the generalization performance of the network and is not used
by the network during training or validation.

Early stopping by monitoring validation error often shows multiple minima
as a function of training time and results are also sensitive to the weight
initialization [340]. In order to have a fair comparison, simulations are carried
out for each network with different random weight initializations over 100
trials. The 50 lowest NMSEs are kept for calculations of mean and standard
deviation, which are then used for comparisons.

The simulations indicate that the input points 1, 4, and 5 are consistently
less important than other inputs (Fig. 2.5). Simulations are re-run after these
less important inputs are eliminated. This results in a network of size 17:2:1
(seventeen inputs, two hidden neurons and one output neuron). We denote
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Fig. 2.5. Distribution of relative importance of 20 inputs for the wavelet MLP
network with decomposition level one in one of the simulations, which is similar to
the results in other simulations.

this wavelet MLP neural network by (17:2:1) = (20:2:1)-[1,4,5]. Simulations
are carried out on other network sizes to reduce the number of inputs when
possible.

Table 2.1 shows that a wavelet MLP network provides a prediction per-
formance comparable to the conventional MLP. After less important inputs
are eliminated, the wavelet MLP shows a more consistent performance for
different weight initializations than the conventional MLP does.

Table 2.1. Result of the three networks with different architectures.

Normalized mean square error (NMSE)

Architecture Type Mean Standard deviation Minimum

Conventional MLP 0.063 0.016 0.0047
20:2:1 Wavelet MLP 0.054 0.0026 0.036

Conventional MLP 0.043 0.0093 0.0069
17:2:1 Wavelet MLP 0.045 1.38 × 10−6 0.045

(20:2:1)-[1,4,5] 0.027 8.051 × 10−6 0.027

Conventional MLP 0.021 0.0107 0.0017
12:2:1 Wavelet MLP 0.032 0.0030 0.013

Conventional MLP 0.015 0.0078 0.0017
Wavelet MLP 0.032 0.0029 0.017

11:2:1 (12:2:1)-[7] 0.021 0.00064 0.017
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(a)

(b)

(c)

Fig. 2.6. Result for network size 17:2:1 on Mackey-Glass time-series prediction (a)
MLP with test and validation NMSE = 0.0028 and 0.0481, respectively. (b) Wavelet
MLP with decomposition level one, validation and test NMSE= 0.0068 and 0.0450,
respectively. (c) Wavelet MLP (17:2:1) = (20:2:1) -[1,4,5], test and validation NMSE
= 0.0126 and 0.0273, respectively. dotted line is the actual data, whereas continuous
line is the predicted data.
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2.2 Wavelet Packet MLP Neural Networks for
Time-series Prediction

2.2.1 Wavelet Packet Multi-layer Perceptron Neural Networks

This section describes the wavelet packet MLP (WP-MLP) and its applica-
tion to time-series prediction [332]. Instead of decomposing the input using
wavelets as in the wavelet MLP studied in the previous section, the WP-MLP
is used as a feature extraction method to obtain time-frequency information.
The WP-MLP has been successfully applied to classification of biomedical
signals, images, and speech.

The WP-MLP consists of three parts, i.e., (1) an input with a tapped delay
line with p delays, (2) wavelet packet decomposition, and (3) an MLP. The
output x̂(n + 1) is the value of the time-series at time n + 1 and is assumed
to be a function of the values of the time-series at p previous time steps.

Wavelet packets were introduced by Coifman et al. [61]. Recursive splitting
of vector spaces is represented by a binary tree. The wavelet packet transfor-
mation is used to produce time-frequency atoms. These atoms provide both
time and frequency information with varying resolution throughout the time-
frequency plane. The time-frequency atoms can be expanded in a tree-like
structure to create an arbitrary tiling, which is useful for signals with complex
structures. A tree algorithm [328] can be employed for computing a wavelet
packet transform with the wavelet coefficients as filter coefficients.

We decompose the input signal using wavelet packets and then feed into
a conventional MLP with k input units, one hidden layer with m sigmoid
neurons, and one linear output neuron. The architecture of the WP-MLP is
defined as [p : l(wlet) : h], where p is the number of tapped delays, l is the
number of decomposition levels, wlet is the type of wavelet packet used, and
h is the number of hidden neurons in the MLP.

2.2.2 Weight Initialization with Clustering

Kolen and Pollack [179] showed that a feedforward network with the back-
propagation technique can be very sensitive to the initial weight selection. A
prototype pattern [74] and the orthogonal least square algorithm [190] may
be used to initialize the weights. Usually, the weights and biases are initialized
to small random values. If the random initial weights happen to be far from a
good solution or they are near a poor local optimum, training may take a long
time or get trapped in the local optimum [117]. Proper weight initialization
will place the weights close to a good solution, which reduces training time
and increases the possibility of reaching a good solution. In this subsection,
we describe methods of weight initialization based on clustering algorithms.

Geva et al. [117] proposed to initialize the weights by a clustering algorithm
based on mean local density (MLD). They showed that this method easily
leads to good performance, whereas a random weight initialization leads to



34 2 MLP Neural Networks for Time-Series Prediction and Classification

a wide variety of different results and many of them were poor. However, we
note that the best result from random weight initialization was much better
than the result obtained from the MLD initialization method.

Following Geva et al. [117], we use a time-frequency event matrix defined
by combining the time-frequency patterns and the respective targeted outputs
of the training data. Each column is made up of a time-frequency pattern and
its respective target. Clustering analysis [159] is the organization of a collection
of patterns into clusters based on similarity. Grouping of the time-frequency
events is thus revealed. Member events within a cluster are more similar to
each other than they are to an event belonging to a different cluster. The
number of clusters is then chosen to be the number of neurons in the hidden
layer of the WP-MLP. There exist many different methods for clustering. The
number of clusters may be chosen before clustering, or may be determined by
the clustering algorithm used. Here, the hierarchical tree clustering algorithm
[4] and a competitive learning algorithm [228] are used.

The hierarchical tree clustering algorithm consists of the following steps:

1. Compute the Euclidean distance between every pair of events in the data
set.

2. Group the events into a binary, hierarchical cluster tree by linking together
pairs of events that are in close proximity. As the events are paired into
binary clusters, the newly formed clusters are grouped into larger clusters
until a hierarchical tree is formed.

3. Cut the hierarchical tree to form a certain number of clusters chosen based
on some prior knowledge.

The second clustering method that we use here is competitive learning.
Let us consider a competitive learning network consisting of a layer of Nn

competitive neurons and a layer of N +1 input nodes, N being the dimension
of the input pattern, and Nn being the maximum number of clusters to be
formed. We have

hk =
N+1∑
j=1

gkjxj , (2.13)

where gkj is the weight connecting neuron k to all the inputs, hk is the total
input into neuron k, and xj is element j of the input pattern. If neuron k
has the largest total input, it will win the competition and becomes the sole
neuron to respond to the input pattern. The input patterns that win the
competition in the same neuron are considered to be in the same cluster. The
neuron that wins the competition will have its weights adjusted as follows:

wnew
kj = (1 − α(t))wold

kj + α(t)xj , (2.14)

where the learning constant α(t) is a function of time. The other neurons do
not adjust their weights. The learning constant will change as follows to ensure
that each training pattern has equal statistical importance and is independent
of presentation order [331]:
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α(τk) =
α(1)

1 + (τk − 1)α(1)
, (2.15)

where τk ≥ 1 is the number of times neuron k has modified its weights,
including the current update. At the end of training, those neurons that never
had their weights modified are discarded. We thus find the number of clusters.

Once clusters are formed, we proceed to initialize the WP-MLP: the num-
ber of hidden neurons of the WP-MLP is chosen to be the same as the number
of clusters and the weights of the hidden neurons are assigned to be the cen-
troid of each cluster.

We select three time-series often found in the literature for benchmarking,
i.e., the Mackey-Glass delay-differential equation, the yearly sunspot read-
ing, and the laser time-series. Each data set is divided into three portions for
training, validation, and testing, respectively. The MLP is trained by the back-
propagation algorithm using the Levenberg-Marquadt method [127]. When
there is an increase in the validation error, training stops. In order to have a
fair comparison, 100 independent simulations are carried out for each weight
initialization method and each time-series (weight initialization can be differ-
ent from trial to trial, since the clustering result can depend on the random
initial starting point for a cluster). We record the minimum error, the mean
error, and the standard deviation over the 100 runs.

2.2.3 Mackey-Glass Chaotic Time-Series

The values of a and b are chosen as 0.2 and 0.1, respectively. The training data
sequences are of length 400, followed by validation and testing data sequences
of lengths 100 and 500, respectively.

We use eight neurons in the hidden layer, i.e., there are eight clusters. The
competitive learning clustering algorithm is initially given 10 neurons. The
experimental results are shown in Table 2.2, Table 2.3, Table 2.4, and Table
2.5.

Table 2.2. Test MSE of the WP-MLP with random initialization on Mackey-Glass
chaotic time-series. * stands for wavelet decomposition.

Architecture
Test MSE
Mean Std Min

[14:1(Db2):8] 1.80 × 10−5 8.13 × 10−6 1.02 × 10−5

[14:2(Db2):8] 3.73 × 10−6 1.86 × 10−5 1.25 × 10−6

[14:3(Db2):8] 1.56 × 10−5 4.51 × 10−6 9.65 × 10−6

*[14:(Db2):8] 1.12 × 10−5 3.83 × 10−6 1.49 × 10−6

Table 2.2 shows the results of prediction errors for the Mackey-Glass time-
series using different architectures of the WP-MLP, i.e. the mean, the standard
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deviation, and the minimum mean squared error (MSE) of the prediction
errors over 100 simulations. Tables 2.3 and 2.4 show the results of prediction
errors for networks initialized by hierarchical tree and competitive learning
clustering algorithms, respectively.

Table 2.3. Test MSE of the WP-MLP initialized with the hierarchical tree clustering
algorithm on Mackey-Glass chaotic time-series. * stands for wavelet decomposition.

Architecture
Test MSE
Mean Std Min.

[14:1(Db2):8] 5.65 × 10−6 1.42 × 10−5 2.16 × 10−6

[14:2(Db2):8] 2.75 × 10−6 3.24 × 10−7 2.31 × 10−6

[14:3(Db2):8] 3.45 × 10−6 1.65 × 10−6 1.53 × 10−6

*[14:(Db2):8] 2.81 × 10−5 5.54 × 10−5 1.38 × 10−5

Table 2.4. Test MSE of the WP-MLP initialized with the competitive learning
clustering algorithm on Mackey-Glass chaotic time-series. * stands for wavelet de-
composition.

Architecture
Test MSE
Mean Std Min.

[14:1(Db2):10] 2.33 × 10−5 4.30 × 10−5 3.54×10−7

[14:2(Db2):10] 1.22 × 10−5 1.21 × 10−5 2.42×10−7

[14:3(Db2):10] 2.96 × 10−5 3.52 × 10−5 9.82×10−7

*[14:3(Db2):10] 2.34 × 10−5 2.24 × 10−5 7.86×10−6

The hierarchical tree clustering algorithm provides a consistent perfor-
mance for the various network architectures except for the network with
wavelet decomposition. The competitive learning clustering algorithm leads
to the lowest minimum MSE with various network architectures.

Table 2.5 shows that the WP-MLP provides superior prediction perfor-
mance compared to many others’ work, including the discrete-time back-
propagation neural network [84], the infinite impulse response (IIR) neural
network [211], a network with non-linear preprocessing [56], and the time
delay neural network with global feedback [134].

2.2.4 Sunspot and Laser Time-Series

Sunspots are large blotches on the sun that are often larger in diameter than
the earth. The yearly average of sunspot areas has been recorded since 1700.
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Table 2.5. Comparisons between the WP-MLP results (with random weight initial-
ization WP-MLP/Rm, and weight initializations based on the hierarchical tree WP-
MLP/HT and competitive learning WP-MLP/CL clustering algorithms) and other
results on the Mackey-Glass time-series found in the literature, i.e., the discrete-time
back-propagation neural network (DTB), the infinite impulse response (IIR) neural
network, a network with non-linear preprocessing (MLP), and the time delay neural
network (TDNN) with global feedback (TDNNGF).

Architecture
Test NMSE
Mean Std Min.

WP-MLP/Rm 1.86 × 10−5 1.25 × 10−6 3.73 × 10−6

WP-MLP/HT 3.45 × 10−6 1.65 × 10−6 1.53 × 10−6

WP-MLP/CL 1.22 × 10−5 1.21 × 10−5 2.42 × 10−7

DTB [20] − − 1 × 10−5

MLP [22] − − 1.05 × 10−5

IIR [21] − − 5.11 × 10−5

TDNN [23] − − 2.8 × 10−4

TDNNGF [23] − − 6.4 × 10−4

The sunspots of the years 1700 to 1920 are chosen to be the training set, 1921
to 1955 as the validation set, while the test set is taken from 1956 to 1979.

‘Set A’ in the Santa Fe competition [340] is a clean physics laboratory
experiment on a Lorentz-like chaotic behavior in an NH3 far-infrared laser.
This time-series includes 1100 samples of amplitude fluctuations in the far-
infrared laser, approximately described by three coupled non-linear ordinary
differential equations. Samples 1 through 900 are chosen to be the training
data, followed by validation and testing data sequences of lengths 100 and
100, respectively.

Our results are comparable to those obtained by Scalenet [117]; however,
Scalenet may be regarded as a committee of subnetworks and we expect that a
committee of multiple WP-MLPs should improve the performance of a single
WP-MLP further.

2.2.5 Conclusion

In this section, we have demonstrated that the WP-MLP can be extremely
useful for time-series prediction. We used hierarchical tree and competitive
learning clustering algorithms to initialize the WP-MLP. Usually the network
weights are initialized to small random values that may be far from a good so-
lution. Simulations show that the weights of the WP-MLP must be initialized
to improve performance.
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2.3 Cost-Sensitive MLP

In many real-world problems, such as financial analysis and medical diagnosis,
different errors in prediction usually lead to different costs. For example, the
cost of making an error in predicting the future of a million-dollar investment
is higher compared to that of a thousand-dollar investment. The cost of mis-
diagnosing a person with serious disease as healthy is much greater than mis-
diagnosing a healthy person as ill. Cost-sensitive neural networks (CSNNs)
address these important issues [19]. Cost-sensitive classification trees have
been studied by Turney [319] and Ting [312].

2.3.1 Standard Back-propagation

The total input to an artificial neuron is

h =
NI∑
j=1

wjVj , (2.16)

where NI is the number of inputs to the neuron (dimension of the input
vector), {w1, w2, ..., wNI

} are the weights or synapses of the neuron, and
{V1, V2, ..., VNI

} are the individual inputs to the neuron either from other
neurons or external sources of input.

The neuron then determines its output a according to

a = f(h + b) , (2.17)

where b is the bias of the neuron and f is usually a non-linear function, which
will be specified later.

Let us consider a layer of NH neurons. All neurons receive an input vector
(pattern) {ξ1, ξ2, ..., ξNI

}. Neuron j in this layer has weights {wj1, wj2, ..., wjNI
}.

Hence, the total input to neuron j is

hj =
NI∑
k=1

wjkξk , (2.18)

which produces output

Vj = g(hj) = g(
NI∑
k=1

wjkξk) , (2.19)

where
g(x) = f(x + b) . (2.20)

Now let us connect a second layer of NO neurons on top of this first layer
of NH neurons to form a feedforward neural network. The weight connecting
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neuron i (i = 1, 2, ..., NO) in the second layer and neuron j (j = 1, 2, ..., NH)
in the first layer is Wij . Hence, neuron i in the second layer receives a total
input

hi =
NH∑
j=1

WijVj =
NH∑
j=1

Wijg(
NI∑
k=1

wjkξk) , (2.21)

and produces output

Oi = g(hi) = g(
NH∑
j=1

WijVj)

= g(
NH∑
j=1

Wijg(
NI∑
k=1

wjkξk)) . (2.22)

Suppose that for an input pattern ξµ used during training, the desired
output pattern is ζµ. We shall use superscript µ to denote the training pattern
µ, where µ = 1, 2, ..., Np and Np is the number of input-output training pairs.

The objective of training is to minimize the error between the actual out-
put Oµ and the desired output ζµ. A commonly used error measure or cost
function is

ε =
1
2

∑
µ,i

[ζµ
i − Oµ

i ]2 , (2.23)

Or, by substituting Eq. (2.22) into Eq. (2.23), we have

ε =
1
2

∑
µ,i

[ζµ
i − g(

∑
j

Wijg(
∑

k

wjkξµ
k ))]2 . (2.24)

Back-propagation uses a gradient descent algorithm to learn the weights.
For the hidden-to-output connections we have

∆Wij = −η
∂ε

∂Wij

= η
∑

µ

[ζµ
i − Oµ

i ]g′(hµ
i )V µ

j

= η
∑

µ

δµ
i V µ

j , (2.25)

where η is called the learning rate and we have defined

δµ
i = g′(hµ

i )[ζµ
i − Oµ

i ]. (2.26)

For the input-to-hidden connections, we have



40 2 MLP Neural Networks for Time-Series Prediction and Classification

∆wjk = −η
∂ε

∂wjk

= −η
∂ε

∂V µ
j

∂V µ
j

∂wjk

= η
∑
µ,i

[ζµ
i − Oµ

i ]g′(hµ
i )Wijg

′(hµ
j )ξµ

k

= η
∑
µ,i

δµ
i Wijg

′(hµ
j )ξµ

k

= η
∑

µ

δµ
j ξµ

k , (2.27)

where we have defined
δµ
j = g′(hµ

j )
∑

i

δµ
i Wij (2.28)

We see that Eq. (2.25) and Eq. (2.27) have exactly the same form, only with
different definitions of the δ’s. In general, for a feedforward neural network
with an arbitrary number of layers, suppose that layer p receives input from
layer q, which can be either a hidden layer or the external input. Then, the
gradient descent learning rule for layer p can always be written as follows:

∆wpq = η
∑

µ

δµ
p V µ

q , (2.29)

where δµ
p represents the error at the output of layer p and V µ

q is the input
to layer p from layer q. If the layer concerned is the final (or top) layer of
the network, δ is given by Eq. (2.26), which represents the error between
the desired and the actual outputs. If the layer concerned is one of the hidden
layers, δ needs to be calculated with some propagating rule, such as Eq. (2.28).
The most popular non-linear function for a neuron is the sigmoid function.

2.3.2 Cost-sensitive Back-propagation

In conventional back-propagation, errors made with respect to different pat-
terns are assumed to be the same, as shown in the cost function given by Eq.
(2.23). We now write a cost-sensitive cost function as follows [22]:

ε =
1
2

∑
µ,i

λµ[ζµ
i − Oµ

i ]2 , (2.30)

where λµ is a cost-dependent factor. The standard back-propagation situation
(2.23) is recovered if we let

λµ = 1 for all µ. (2.31)
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With Eq. (2.30), we can easily generalize the standard back-propagation
(SBP) algorithm to cost-sensitive situations. By going through the same
derivations as above, we can show that the cost-sensitive cost function given
by Eq. (2.30) is minimized by the same back-propagation algorithm, but with
Eq. (2.29) modified as follows:

∆wpq = η
∑

µ

λµδµ
p V µ

q . (2.32)

Other quantities such as the δ’s and V ’s are calculated in the same ways as
in the standard back-propagation case.

In an iterative implementation, i.e., all weights are updated after each
training pattern is presented, the above cost-sensitive back-propagation (CSBP)
can be realized by simply replacing the learning rate η in the standard back-
propagation case by a cost-sensitive learning rate λµη for each training pattern
µ.

In the CSBP, ‘more important’ pattern classes with larger cost factors
(λ) have larger learning rates compared to the ‘less important’ classes with
smaller cost factors. Let us consider a case with only two pattern classes.
Suppose that λ(1) = 3λ(2) = 3, or making an error in classifying a pattern
of class 1 is three times as costly as making an error in classifying a pattern
of class 2. The CSBP requires that the learning rate for class 1 is 3η if the
learning rate for class 2 is η. This is roughly equivalent to the case where
we use the SBP, i.e., the same learning rate for all classes, and present each
training pattern in class 2 only once to the network, but present each training
pattern in class 1 three times.

Suppose that there are a total of Np input-output pattern pairs for training
and there are Ncl classes (kinds) of patterns. In particular, there are Nk

training patterns for class k, where k = 1, 2, ..., Ncl. In this book, we assume
that there are an equal number of training patterns for each class, i.e.,

Nk = No (2.33)

for all k = 1, 2, ..., Ncl.
Hence,

Ncl∑
k=1

Nk = Np = NclNo. (2.34)

Since, in the SBP cost function (2.23), the sum of all coefficients in front
of [ζµ

i − Oµ
i ]2 is ∑

µ

1 = Np , (2.35)

it is reasonable to require the same condition satisfied in the CSBP. This can
be achieved by choosing

λµ = Ncl

Ck(µ)∑Ncl

k=1 Ck

. (2.36)
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The SBP is recovered if all C’s are the same (thus all λ’s are 1).

2.3.3 Experimental Results

Assume that two classes of patterns are uniformly distributed in two inter-
secting circles in a plane. We randomly generate 600 training patterns (char-
acterized by their coordinates in the plane) for each of the two classes. These
patterns are used to train the neural network by setting different cost func-
tions. The neural network has one input layer of two neurons, one hidden layer
of three neurons with sigmoid transfer functions, and one output layer of one
neuron with a sigmoid transfer function. Three different cost-factor settings
are used in the simulation study. The different cost factors are set as follows:

• Case 1. C1 = C2 = 0.5: this is corresponding to the standard back-
propagation (SBP) algorithm.

• Case 2. C1 = 0.2, C2 = 0.8: this sets a higher cost for class 2 than class 1.
• Case 3. C1 = 0.8, C2 = 0.2: this sets a higher cost for class 1 than class 2.

After the network is trained, we randomly generate another 600 test pat-
terns for each class to test the neural network for the recognition rate.
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Fig. 2.7. Two classes are represented by triangles and circles, respectively.
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The results are shown in Fig. 2.7, where we have computed the decision
boundary of the neural network for different cases. The solid line shows the
decision line for the standard back-propagation, the dotted line shows the
decision line for Case 2, and the dashed line shows the decision line for Case
3.

The correct recognition rates for the three neural networks using the same
set of test patterns are given in Table 2.6.

Table 2.6. Recognition rates for test patterns.

Class 1 Class 2 Total

Case 1 561/600 571/600 1132/1200
C1 = C2 = 0.5 (93.5%) (95.2%) (94.3%)

Case 2 542/600 594/600 1136/1200
C1 = 0.2, C2 = 0.8 (90.3%) (99.0%) (94.7%)

Case 3 599/600 533/600 1132/1200
C1 = 0.8, C1 = 0.2 (99.8%) (88.8%) (94.3%)

As we can see from Fig. 2.7 and Table 2.6, the recognition rates for the
‘important’ classes (with higher cost) are higher than the recognition rates for
the ‘less important’ classes. The decision boundaries in Fig. 2.7 also clearly
reveal this result.

2.4 Summary

In this chapter, we first used a wavelet MLP, consisting of a wavelet decom-
position layer and a conventional MLP, for time-series prediction. We ana-
lyzed the relative importance among the input wavelets. After less important
wavelets are eliminated, the modified wavelet MLP network provides a more
consistent and stable network that is evident in its low mean and standard
deviation for NMSE. This is in contrast to the conventional MLP network
that has a large performance swing and is sensitive to weight initialization.

However, the wavelet MLP without input elimination did not show signif-
icance improvement over the conventional MLP. It is suspected that different
signals have different time-frequency compositions. Thus, the decomposition
level, type of wavelet, or decomposition type may vary significantly with sig-
nal. Therefore, more work is required to equip the network with the ability to
adapt to different signals without human intervention.

We also describe a cost-sensitive MLP, in which errors in prediction are
biased towards ‘important’ classes based on the fact that different prediction
errors on different classes usually lead to different costs. Experiments show
that the recognition rates for the ‘important’ classes (with higher cost) are
higher than the recognition rates for the ‘less important’ classes.
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Fuzzy Neural Networks for Bioinformatics

3.1 Introduction

Here we concentrate on the technology of fuzzy logic in intelligent data
processing [20][92][239][347] because it provides a highly intuitive and ap-
pealing presentation to the end user.

Microarray data analysis is one of those attractive fields of data mining.
With the help of gene expressions obtained from microarray technology, het-
erogeneous cancers can be classified into appropriate subtypes [274]. Recently,
different kinds of machine learning and statistical methods [5][34][75][173][306]
have been used to analyze gene expression data.

To evaluate the effectiveness of these cancer classification methods, two
criteria may be used, i.e., the classification accuracy and the number of genes
used by the classifier. For a cancer classifier, the fewer the genes used, the
lower the computational burden. A reduced number of genes can significantly
increase the classification accuracy because of the reduction or the absence of
irrelevant genes acting as “noise” for the classifier. Perhaps more importantly,
once a smaller subset of genes are identified as relevant to a particular cancer,
it helps biomedical researchers focus on these genes that contribute to the
development of the cancer. Therefore, finding the smallest gene subsets that
can ensure highly reliable classification results becomes a problem of both
theoretical and practical importance.

3.2 Fuzzy Logic

3.2.1 Fuzzy Systems

Fuzzy logic, the logic based upon which fuzzy systems operate, is much closer
in spirit to human thinking and natural language than conventional digital
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logic. Basically, it provides an effective means of capturing the approximate
and inexact nature of the real-world knowledge.

Classical logic is referred to as bivalent. Statements are said to be either
true or false [182]. This is Aristotle’s legacy. He stated that the intersection
between set ‘A’ and set ‘NOT-A’ was null, an empty set. This was considered
to be philosophically correct for over 2000 years. It is also interesting to note
that two centuries earlier Buddha held a very different world view. Rather
than a cleanly cut perspective of a black-and-white world, he saw a world
filled with contradictions. Buddha stated that a rose could be to a certain
degree completely red, but also at the same time it was to a degree not red,
i.e., the rose can be red and not red at the same time [182]. This is in clear
contradiction with an Aristotle’s viewpoint.

Fuzzy logic was invented by Lotfi Zadeh in 1964. According to Zadeh [354],
the essential characteristics of fuzzy logic are:

• In fuzzy logic, exact reasoning is viewed as a limiting case of approximate
reasoning.

• In fuzzy logic, everything is to a matter of degree.
• Any logic system can be fuzzified.
• In fuzzy logic, knowledge is interpreted as a collection of elastic or equiv-

alent, fuzzy constraints on a collection of variables.
• Inference is viewed as a process of propagation of elastic constraints.

Fuzzy logic states that everything is to a matter of degree and fuzzy sets
are properties (e.g., low, medium, high) whose elements belong to the sets
only in a degree. One example for the fuzzy set High Speed is as shown in Fig.
3.1.

The degree of belonging is defined by the value of a membership function
(MF), which has values between 0 and 1. Such a technique clearly provides a
way of representing uncertainties in a mathematical model. The most popular
membership functions are the triangular functions, Gaussian functions, bell-
shaped functions, and trapezoidal functions. An illustration for bell-shaped
membership functions is shown in Fig. 3.2. It is defined as:

µ(x) =
1

1 + [(x−c
a )2]b

. (3.1)

We define a fuzzy rule as if x then y, where x (the condition side) is a
conjunction in which each clause specifies an input variable and one of the
membership functions associated with it, and y (the conclusion side) specifies
an output variable membership function. There may be at most one clause
for each input variable. For example,

IF input1 = high and input2 = low THEN output = medium.

Fuzzy systems are rule-based expert systems, which comprise a set of fuzzy
rules also known as linguistic rules in the form of ‘IF–THEN’ [160]. Fuzzy
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Fig. 3.1. An illustration for a fuzzy set as opposed to a crisp set: high speed
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Fig. 3.2. An example of fuzzy membership functions: bell-shaped.
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Fig. 3.3. Illustration for a general rule-based fuzzy system.

systems are also known as fuzzy models [295], fuzzy associative memories
(FAMs) [181], or fuzzy controllers [188] when used in control applications. A
block diagram for a general fuzzy system is shown in Fig. 3.3.
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Fig. 3.4. An illustration for a Mamdani-type fuzzy system (‘MF’ stands for ‘mem-
bership function’).

Fuzzy systems can be broadly categorized into two families. The first in-
cludes linguistic models based on collections of IF–THEN rules, whose an-
tecedents and consequents utilize fuzzy values. This family of fuzzy systems
uses fuzzy reasoning and the system behavior can be described in natural
terms. The Mamdani model falls in this group [206]. The knowledge is repre-
sented as:

Ri : IF x1 is Ai
1 AND x2 is Ai

2 . . . AND xn is Ai
m THEN yi is Bi, (3.2)

where Ri (i = 1, 2, . . . , l) denotes the ith fuzzy rule, xj (j = 1, 2, . . . , n) is
the input, yi is the output of the fuzzy rule Ri, and A1

i , A
2
i , . . . , A

i
n, Bi (i =

1, 2, . . . , l) are fuzzy membership functions usually associated with those lin-
guistic terms.

The overall fuzzy output is derived by a ‘maximum’ operation to the quali-
fied fuzzy outputs (each of them is equal to the minimum of the firing strengths
and the output membership function of each rule). Various schemes have been
proposed to choose the final crisp output based on the overall fuzzy output.
Some of them are centroid of area (COA), mean of maximum (MOM), max-



50 3 Fuzzy Neural Networks for Bioinformatics

imum criterion, etc. [188]. For the COA method, in the case of a discrete
universe, the output is [188]:

y =
∑u

i=1 µy(wi) × wi∑u
i=1 µy(wi)

. (3.3)

A block diagram for a Mamdani-type fuzzy system is shown in Fig. 3.4.
The centroid of area is used for the defuzzifier.

The second category, based on Sugeno-type systems, uses a rule structure
that has fuzzy antecedent and functional consequent parts [299]. For example,

Ri : IF x1 is Ai
1 and x2 is Ai

2 · · · and xn is Ai
m

THEN yi = ai
0 + ai

1 × x1 + · · · + ai
n × xn. (3.4)

This approach approximates a non-linear system with a combination of
several linear systems, by decomposing the whole input space into several
partial fuzzy spaces and representing each output space with a linear equa-
tion. Such models are capable of representing both qualitative and quanti-
tative information and allow relatively easy application of powerful learning
techniques. These fuzzy models are capable of approximating any continuous
real-valued function on a compact set to any degree of accuracy. This type of
knowledge representation does not allow the output variables to be described
in linguistic terms and the parameter optimization is carried out iteratively
using a non-linear optimization method. A block diagram for a Sugeno-type
fuzzy system is shown in Fig. 3.5.

Experiments demonstrate that the model has the following advantages:

• computational efficiency,
• working well with linear techniques,
• working well with optimization and adaptive techniques,
• continuity of the output surface,
• adapting to mathematical analysis.

It should be highlighted that if no input variables are considered, (3.4) is
the same as (3.2), with Bi as a singleton. For convenience, we call this fuzzy
model a simplified Sugeno-type model.

Both types of fuzzy models have been extensively used in both system
modelling and control purposes. Through the use of linguistic labels and mem-
bership functions, a fuzzy IF–THEN rule can easily capture the spirit of “rules
of thumb” frequently used by human beings [160]. However, there is a tradeoff
between readability and precision [218]. If one is interested in a more precise
solution, then he will have to give up some linguistic interpretability. In this
book, a simplified Sugeno-type model is used.
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Fig. 3.5. An illustration for a Sugeno-type fuzzy system.

3.2.2 Issues in Fuzzy Systems

From the brief overview of fuzzy systems, we can see that fuzzy systems offer
a simple but efficient approach for domain experts to design systems for mod-
elling. In other words, designing a fuzzy system is a subjective approach which
is adopted to express domain knowledge of experts. However, domain experts
do not structure their decision makings in any formal ways. As a result, the
process of transferring expert knowledge into a usable knowledge base is time
consuming and non-trivial [188]. Moreover, depending on human experience
may result in some severe problems, because even for human experts, their
knowledge is often incomplete and episodic rather than systematic. The fol-
lowing questions still remain as open issues.

• Structure identification of fuzzy systems, such as determination of the
partition of the input space, the number of membership functions, and the
number of rules, may be difficult [296].

• Problems with multi-input and multi-output (MIMO) systems, especially
high dimensionality, are often encountered in implementation of fuzzy sys-
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tems, and the number of rules increases rapidly for multiple input systems.
This is the so-called curse of dimensionality [337].

• Few general and analytical tools are available for analyzing the perfor-
mance of a fuzzy system.

3.3 Fuzzy Neural Networks

3.3.1 Knowledge Processing in Fuzzy and Neural Systems

Although the origins and motivations of fuzzy systems and neural networks
are quite different, with the former trying to capture human thinking and
reasoning capability at a cognitive level and the latter attempting to mimic
the mechanism of the human brain at a biological level, they do share some
important common properties, particularly when they are employed in solving
engineering problems [227].

Instead of representing knowledge using IF–THEN localized associations
as in fuzzy systems, a neural network stores knowledge through its struc-
ture, and more specifically its connection weights and local processing units.
Feedforward computing in neural networks plays the same role of forward rea-
soning as that in fuzzy systems. Fuzzy systems acquire knowledge normally
from domain experts, whereas neural networks usually acquire knowledge from
samples.

Functionally, a fuzzy system or a neural network can be described as a
function approximator, which aims at obtaining an approximation of an un-
known mapping f : 
r → 
s from sample patterns drawn from the function f .
Theoretical investigations have revealed that both neural networks and fuzzy
inference systems are universal approximators [334], i.e., they can approxi-
mate any function to any specified accuracy provided that sufficient hidden
neurons or fuzzy rules are available.

3.3.2 Integration of Fuzzy Systems with Neural Networks

As stated earlier, fuzzy systems provide an inference morphology that enables
approximate human reasoning capabilities to be applied to knowledge-based
systems. The theory of fuzzy logic provides a mathematical strength to capture
uncertainties associated with human cognitive processes, such as thinking and
reasoning. However, a common bottleneck in fuzzy logic is its dependence on
the specification of good rules from human experts. Also, there exists no formal
framework for the choice of various parameters of fuzzy systems and hence
the means of tuning them has become an important subject of fuzzy systems.
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Neural networks, on the other hand, offer exciting advantages, such as
learning, adaptation, fault tolerance, parallelism, and generalization. They
are capable of coping with computational complexity, non-linearity, and un-
certainty. In view of this versatility of neural networks, it is believed that they
hold great potential as building blocks for a variety of behaviors associated
with human cognition. But the main problem in neural networks is that how
these networks operate is still not clear to users; this is why neural networks
are sometimes called ‘black boxes’: it can be difficult to interpret the output of
a trained network. Hence, some researchers have been studying how to extract
knowledge from neural networks [106][108][149][284].

Recently, there has been substantial interest and practice in the synergy
of fuzzy systems and neural networks. This has given birth to a rapidly
emerging field, fuzzy neural networks (FNNs), which are intended to capture
capabilities of both types of systems and overcome drawbacks of each sys-
tem [125][160][181][227][295][336]. The majority of reported studies of FNNs
mainly address one of the following functions:

• Using FNNs to tune fuzzy systems [300].
• Extracting fuzzy rules from given numerical examples [336].

3.4 A Modified Fuzzy Neural Network

In this section, a modified fuzzy neural network (FNN) is described [93]–[99].
This FNN combines the features of initial fuzzy model self-generation, fast
input selection, partition validation, parameter optimization and rule-base
simplification. The structure, implementation and functionality of this FNN
are described in details in the following sections.

3.4.1 The Structure of the Fuzzy Neural Network

The structure of the modified fuzzy neural network is as shown in Fig. 3.6.
The network consists of four layers, i.e., the input layer, the input membership
function layer, the rule layer, and the output layer.

In databases, data fields are either numerical or categorical. The input
membership function layer generates input membership functions for numer-
ical inputs, i.e., numerical values are converted to categorical values. For ex-
ample, the continuous numerical values of age can be converted to categorical
values such as young, middle-aged, and old. Each input node is connected to
all membership functions for this input. We use piecewise-linear triangular
membership functions (3.5) for computational efficiency, as shown in Fig. 3.7.

µ(x) =

⎧⎨
⎩

x−l
c−l , l ≤ x ≤ c,
x−r
c−r , c < x ≤ r,

0, otherwise.
(3.5)
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Fig. 3.6. The structure of the modified FNN

The left-most and right-most membership functions are shouldered to
cover the whole operating range of each input.

Each rule node is connected to all input membership function nodes and
all output nodes for this rule. Each rule node performs a product of its inputs.
The input membership functions act as fuzzy weights between the input layer
and the rule layer. Links between the rule layer, the output layer, and the
input membership functions are adaptive during learning. In the output layer
each node receives inputs from all rule nodes connected to this output node.

The flow chart for structure generation and the learning algorithm of the
proposed fuzzy neural network are shown in Fig. 3.8. The learning algorithm
aims at constructing the fuzzy system by locating the initial membership func-
tions and initial parameters of the consequence linear functions, generating
the required fuzzy rules, tuning the membership functions, and updating the
consequence parameters and the rule base so that the performance is opti-
mized through the whole set of training data pairs. The detailed explanations
are given in the following sections.
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Fig. 3.7. The triangular membership function.

3.4.2 Structure and Parameter Initialization

Firstly, we create n nodes for the input layer and m nodes for the output layer,
where n and m are the numbers of the input variables (attributes) and the
output variables (classes), respectively. The rule layer is empty, i.e., there are
initially no rules in the rule base. Then, we initialize the fuzzy neural network
as follows [336]:

Step 1: Divide the input spaces into fuzzy regions
We define the universe of discourse of each input variable as [x−

j ; x+
j ] and

then divide each universe of discourse into N regions. Though N could be
different for different variables, at the initialization stage we just assume an
equal number of divided regions (fuzzy membership functions) for each input
variable, which is set to 2. Further modification will be considered in the
following stages.

Then, we add two equally spaced input membership functions along the
operating range of each input variable. In such a way these membership func-
tions will satisfy ε-completeness [188]. The ε-completeness means that for a
given value of x for one of the input variables in the operating range, we can
always find a linguistic label A such that the membership value µA(x) ≥ ε.
In this manner, the fuzzy neural network can provide a smooth transition
and sufficient overlapping from one linguistic variable to another. A similar
idea can also be found in earlier literature on modular neural networks [50].
As the values of these parameters change by back-propagation training, the
triangular-shaped functions vary, thus exhibiting various forms of membership
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Fig. 3.8. A flow chart of the FNN learning algorithm. ( c© 2005 IEEE) We thank
the IEEE for allowing the reproduction of this figure, first appeared in [59].
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functions on a linguistic label. If the ε-completeness is not satisfied, there may
be no rule applicable for a new training data pair.

The shape of each membership function associated with each region that
defines a fuzzy term was assumed triangular, denoted as (l, c, r) for (left
bound, center, and right bound). Two special properties of fuzzy terms so
defined are: (1) adjacent terms have 1/2 overlap and (2) for the middle terms,
the left bound of term i is the center of term i − 1 and the right bound of
term i is the center of term i + 1.

The minimal and maximum values of each variable are often used to define
its universe of discourse. That is, [x−

j ; x+
j ] = [min(xj),max(xj)]. They are

also considered to be the center of the left-end term and the right-end term,
respectively. That is, C1j = min(xj) and CNj = max(xj). Accordingly, the
other term center, cij , can be computed as follows:

cij = min(xj)+i×(max(xj)−min(xj))/(N−1), where i = 2, ..., N−1. (3.6)

Step 2: Generate fuzzy rules from given training data
In this step, we create the initial rule-base layer using the following form

for rule i:

Rule i : IF x1 is Ai
x1

and x2 is Ai
x2

. . . and xn is Ai
xn

THEN y1 = wi
1 , . . . , ym = wi

m, (3.7)

where xj (j = 1, 2, ..., n) and yl (l = 1, 2, ...,m) are the inputs and the outputs,
respectively. wi

l is a real number. Ai
q (q = x1, x2, ..., xn) is the membership

function of the antecedent part of rule i for node q in the input layer.
Firstly, we need to determine the membership degrees of each training

data pair for each fuzzy term defined on each region, variable by variable.
Secondly, each training data pair is associated with the term having the high-
est membership degree, again variable by variable. Finally, we can obtain one
rule for each training data pair using the term selected in the previous step.
The rules so generated are “AND” rules and the antecedents of the IF part of
each rule must be met simultaneously in order for the consequent of the rule
to occur [336].

The membership value µi of the premise of the ith rule, which is also called
the degree of the ith rule, is calculated using the product operator

µi = Ai
x1(x1) · Ai

x2(x2) · · · Ai
xn(xn). (3.8)

The degree of a rule generated by a training data pair indicates our belief of
its usefulness.

The output yl of the fuzzy inference is obtained using the weighted average:

yl =

∑
i

µiw
i
l∑

i

µi
. (3.9)
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Step 3: Pruning the fuzzy rule base
When the number of training data pairs is large, it is quite possible that

the same rule could be generated by more than one data pair. These rules
are redundant rules. The redundant rules must be removed to maintain the
integrity of the rule base. This is achieved by keeping only the rule with
the highest degree for each fuzzy region. The one with the highest degree is
deemed most useful; therefore, it is kept. Upon this step, the fuzzy rule base
is complete.

3.4.3 Parameter Training

The adjusted parameters in the network structure of the FNN can be divided
into two categories based on the IF (premise) part and the THEN (conse-
quence) part of the fuzzy rules. In the premise part we need to fine tune the
left bounds, centers, and right bounds of triangular membership functions. In
the consequence part, the adjusted parameters are the consequence weights.

Once the FNN has been initialized, a gradient-descent-based BP algorithm
[344] is employed to adjust the parameters of the fuzzy neural network by using
the training data set.

As shown in Fig. 3.6, there are four layers in the FNN. Suppose that the
kth layer has n(k) nodes. We can denote the node in the ith position of the
kth layer by (k, i), and its node function (or node output) by Ok

i . Since a node
output depends on its incoming signals and its parameter set, we have

Ok
i = Ok

i (Ok−1
1 , ..., Ok−1

n(k−1), p1, p2, p3, ...), (3.10)

where p1, p2, p3, ... are the parameters pertaining to this node. Here we use
Ok

i as both the node output and the node function.
Assuming that the given training data set has P entries, we can define

the error measure (or energy function) for the pth (1 ≤ p ≤ P ) entry of the
training data as the summation of the squared errors:

Ep =
n(4)∑
i=1

(Tm,p − O4
m,p)

2, (3.11)

where Tm,p is the mth component of the pth target output vector and O4
m,p is

the mth component of the actual output vector produced by the presentation

of the pth input vector. Hence, the overall error measure is E =
P∑

p=1
Ep.

In order to develop a learning procedure that implements gradient descent
in E over the parameter space, firstly we have to calculate the error rate
∂E/∂O for p training data and for each output node O. The error rate for the
node output at (4, i) can be calculated readily from Eq. (3.11):
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∂Ep

∂O4
i,p

= −2 × (Ti,p − O4
i,p). (3.12)

For the internal node at (k, i), the error rate can be derived by the chain rule:

∂Ep

∂Ok
i,p

=
n(k+1)∑
m=1

∂Ep

∂Ok+1
m,p

× ∂Ok+1
m,p

∂Ok
i,p

, (3.13)

where 1 ≤ k ≤ 3. That is, the error rate of an internal node can be expressed
as a linear combination of the error rates of the nodes in the next layer.
Therefore, for all 1 ≤ k ≤ 4 and 1 ≤ i ≤ n(k), we can find ∂Ep/∂Ok

i,p by Eq.
(3.12) and Eq. (3.13).

Now, if α is a parameter of the given adaptive network, we have:

∂Ep

∂α
=

∑
O∈S

∂Ep

∂O
× ∂O

∂α
, (3.14)

where S is the set of nodes whose outputs depend on α. Then, the derivative
of the overall error measure E with respect to α is:

∂E

∂α
=

P∑
p=1

∂Ep

∂α
. (3.15)

Accordingly, the update formula for the generic parameter α is:

�α = −η × ∂E

∂α
, (3.16)

in which η is a learning rate, which can be further expressed as:

η =
k√∑

α(∂E
∂α )2

, (3.17)

where k is the step size, the length of each gradient transition in the parameter
space. Usually, we can change the value of k to vary the speed of convergence.

We let the learning rate η vary to improve the speed of convergence, as
well as the learning performance (accuracy). We update η according to the
following two heuristic rules:

1. If the error measure undergoes five consecutive reductions, increase η by
5%.

2. If the error measure undergoes three consecutive combinations of one in-
crease and one reduction, decrease η by 5%.

Furthermore, due to this dynamical updating strategy, the initial value of
η is usually not critical as long as it is not too large.

The learning error εl is reduced towards zero or a prespecified small value
εdef > 0 as the iteration number k increases:
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||εlk(t)|| → 0 or ||εlk(t)|| < εdef , t ∈ [0, T ], as k → ∞ . (3.18)

3.4.4 Structure Training

In this section, structure learning is used in the modified fuzzy neural net-
work. Firstly, redundant inputs are eliminated. Then, fuzzy partitions are
adjusted based on similarity measures. Finally, the fuzzy rule base is modified
considering both accuracy and generality.

3.4.5 Input Selection

Real-world classification problems usually involve many attributes and all at-
tributes are not always necessary for the classification task. That is, some
attributes may be removable without significant deterioration of the classi-
fication ability. If only a few attributes are selected, it is easier to design a
fuzzy rule-based classification system with high comprehensibility.

In this step, we evaluate the importance of each input variable based on
the initial fuzzy model that incorporates all possible input variables and then
eliminate those redundant inputs. The objective of this step is to reduce the
input dimensionality of the model without significant loss in accuracy. Elimi-
nation of redundant input features may even improve the accuracy.

It is known that the change of system output is contributed by all input
variables. The larger the output change caused by a specified input variable,
the more important this input may be. The modified fuzzy neural network
provides an easy mechanism to test the importance of each input variable
without having to generate new models as done in [161]. The basic idea is
to let the antecedent clauses associated with a particular input variable i in
the rules be assigned a truth value of 1 and then compute the fuzzy output,
which is due to the absence of input i. Then, we rank those fuzzy outputs
from worst to best, and the worst result indicates that the associated input
is the most important.

Furthermore, we have to decide how many inputs should be selected. We
start from using the most important input as the only input to the FNN,
setting antecedents associated with all other inputs to 1. In the following
steps, each time we add one more input according to the ranking order. The
subset with the best output result is selected as the input group; other inputs
and associated membership functions are deleted.

In Sect. 3.6.2, we will introduce another feature selection method, which
is the t-statistics-based approach for gene ranking and selection. Besides the
ability of finding the most discriminative features, this method can also be
used to handle the correlated feature selection problem [136][215].
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3.4.6 Partition Validation

After supervised learning using the back-propagation algorithm, we may find
that some of the fuzzy sets in layer two are almost the same. In other words,
some term sets of the corresponding universe of discourse have a high degree
of similarity. Term sets with a high degree of similarity can be combined into
a single term set, that is, they can share a common term node.

In this step, we calculate fuzzy similarities between different fuzzy sets for
each input variable. If the degree of overlapping of membership functions is
greater than a threshold, we combine those membership functions. We use the
following fuzzy similarity measure equation [80]:

E(A1, A2) =
M(A1 ∩ A2)
M(A1 ∪ A2)

, (3.19)

where ∩ and ∪ denote the intersection and union of two fuzzy sets A1 and
A2, respectively. M(·) is the size of a fuzzy set, and 0 ≤ E(A1, A2) ≤ 1. The
higher E(A1, A2), the more similar fuzzy sets A1 and A2 are.

From Eq. (3.19), we see that the computation of the similarity of two fuzzy
sets requires calculating the size of the intersection and union of two triangular
membership functions. For any two fuzzy sets A1 and A2, M(A1 ∪ A2) can
be easily derived as follows:

M(A1 ∪ A2) = M(A1) + M(A2) − M(A1 ∩ A2) (3.20)

Using the above equation of fuzzy similarity measure, the exact formula for
the fuzzy similarity measure of two fuzzy sets with triangular-shaped member-
ship functions, which will be used in our fuzzy neural network, can be derived
as below. We consider the similarity measure in six different cases based on
the relative positions of membership functions. Figure 3.9 shows the six cases
under consideration.

• Case 1: E(A1, A2) = 0,
• Case 2: hrl = L2−R1

C1−C2+L2−R1
,

M(A1 ∩ A2) = 1
2 × (R1 − L2) × hrl,

• Case 3: hrl = L2−R1
C1−C2+L2−R1

, hrr = R2−L1
C1−C2+R2−R1

,

M(A1 ∩ A2) = 1
2 × (R1 − L2) × hrl − 1

2 × (R1 − R2) × hrr,
• Case 4: hll = L2−L1

C1−C2+L2−L1
, hrl = L2−R1

C1−C2+L2−R1
,

M(A1 ∩ A2) = 1
2 × (R1 − L2) × hrl − 1

2 × (L1 − L2) × hll,
• Case 5: hll = L2−L1

C1−C2+L2−L1
, hrl = L2−R1

C1−C2+L2−R1
, hrr = R2−R1

C1−C2+R2−R1
,

M(A1∩A2) = 1
2 ×(R1−L2)×hrl− 1

2 ×(L1−L2)×hll− 1
2 ×(R1−R2)×hrr,

• Case 6: sort L1, L2, R1, R2 as : La < Lb < Rc < Rd

E(A1, A2) = Rc−Lb

Rd−La
,

• For Case 2 to Case 5: M(A1 ∪ A2) = 1
2 × (R1 + R2 − L1 − L2)

M(A1 ∪ A2) = M(A1) + M(A2) − M(A1 ∩ A2).
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Fig. 3.9. Fuzzy similarity measures of two triangular membership functions at
different relative positions.

If an input variable ends up with only one membership function, which
means that this input is irrelevant, then we delete the input. We can thus
eliminate irrelevant inputs and reduce the size of the rule base.

After this step, if the classification accuracy of the FNN is below the
requirement, and the number of rules is less than the specified maximum,
we will modify the rule base by following the method introduced in the next
section.

3.4.7 Rule Base Modification

In general, when a fuzzy rule-based classification system consists of a large
number of specific fuzzy IF–THEN rules, its classification performance on
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training patterns is very high [157]. Generalization ability on test patterns
of such a fuzzy system, however, is not always high due to the overfitting
to training patterns. A large number of fuzzy IF–THEN rules also degrade
the comprehensibility of fuzzy rule-based classification systems. On the other
hand, when a fuzzy rule-based classification system consists of a small number
of general fuzzy IF–THEN rules, the comprehensibility is high. Such a compact
fuzzy system can avoid the overfitting to training patterns. There are, however,
many cases where a large number of fuzzy IF–THEN rules are required for
handling complicated non-linear classification problems. That is, when the
number of fuzzy IF–THEN rules is too small, fuzzy rule-based classification
systems may have poor classification ability on training patterns as well as
test patterns. There is a tradeoff between the performance of a fuzzy rule-
based classification system and the number of fuzzy IF–THEN rules. That is
why we need the rule-base modification procedure.

Firstly, an additional membership function is added for each input at its
value at the point of the maximum output error, following Higgins and Good-
man [135]. One vertex of the additional membership function is placed at the
value at the point of the maximum output error and has the membership
value unity; the other two vertices lie at the centers of the two neighboring
regions, respectively, and have membership values zero. As the output of the
network is not a binary 0 or 1, but a continuous function in the range from 0
to 1, by firstly eliminating the error whose deviation from the target value is
the greatest, we can speed up the convergence of the network substantially.

The rules generated above are then evaluated for accuracy and generality.
We use a weighting parameter between accuracy and simplicity, which is the
compatibility grade (CG) of each fuzzy rule. CG of rule j is calculated by the
product operator as:

µj(x) = µj1(x1) × µj2(x2) × · · · × µjn(xn), (3.21)

when the system provides correct classification results.
All rules whose compatibility grade (CG) falls below a predefined threshold

are deleted. Elimination of rule nodes is rule by rule, i.e., when a rule node
is deleted, its associated input membership nodes and links are deleted as
well. By varying the CG threshold we are able to specify the degree of rule
base compactness. The size of the rule base can thus be kept minimal. If
the classification accuracy of the FNN after the elimination of rule nodes is
below the prescribed requirement, we will add another rule as described in
the previous section; otherwise we will stop the training process.

3.5 Experimental Evaluation Using Synthesized Data
Sets

To demonstrate the effectiveness of the modified fuzzy neural network [93],
we use 10 classification problems of different complexity defined in [2] on
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a synthetic database. Experimental results are compared with decision tree
construction algorithms C4.5 and C4.5rules [251] and a pruned feedforward
crisp neural network (NeuroRule) [200].

3.5.1 Descriptions of the Synthesized Data Sets

There are nine attributes (see Table 3.1 for detailed descriptions) involved for
the experiments. Attributes elevel, car, and zipcode are categorical, and all
others are non-categorical.

Table 3.1. Descriptions of attributes for the 10 synthesized problems defined in [2].

Attribute Description Value

salary Salary Uniformly distributed from
20K to 150K

commission Commission Salary ≥ 75K => commission = 0 else
uniformly distributed from 10K to 75K

age Age Uniformly distributed from 20 to 80

elevel Education level Uniformly chosen from 0 to 4

Car Make of the car Uniformly chosen from 1 to 20

zipcode Zip code of the town Uniformly chosen from 9 available
zipcodes

hvalue Value of the house Uniformly distributed from n50K to
n150K, where n ∈ 0, ..., 9 depends on zipcode

hyears Years house owned Uniformly distributed from 1 to 30

loan Total loan amount Uniformly distributed from 0 to 500K

The first classification problem has predicates on the values of only one
attribute. The second and third problems have predicates with two attributes,
and the fourth to sixth problems have predicates with three attributes. Prob-
lems 7 to 9 are linear functions and problem 10 is a non-linear function of
attribute values.

Attribute values were randomly generated according to the uniform dis-
tribution as in [2]. For each experiment we generated 1000 training and 1000
test data tuples. The target output was 1 if the tuple belongs to class A, and
0 otherwise. We used the random data generator with the same perturbation
factor p = 5% as in [2] to model fuzzy boundaries between classes. The number
of data points available for class A (class data distribution) in each problem is
as follows: problem 1 = 1321 (66.1% of the total number of data points in this
problem), problem 2 = 800 (40.0%), problem 3 = 1111 (55.5%), problem 4
= 626 (31.3%), problem 5 = 532 (26.6%), problem 6 = 560 (28.0%), problem
7 = 980 (49.0%), problem 8 = 1962 (98.1%), problem 9 = 982 (49.1%), and
problem 10 = 1739 (87.0%).
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The detailed descriptions of the 10 testing functions are as shown below,
where M?N : Q is equivalent to the sequential condition, i.e., the expression
is equivalent to (M

∧
N)

∨
(M

∧
Q) [2].

• Function 1
Class A: (age < 40)

∨
((60 ≤ age)

• Function 2
Class A: ((age < 40)

∧
((50K ≤ salary ≤ 100K))

∨
((40 ≤ age <

60)
∧

(75K ≤ salary ≥ 125K))
∨

((age ≥ 60)
∧

(25K ≤ salary ≤ 75K))
• Function 3

Class A: ((age < 40)
∧

(elevel ∈ [0, 1]))
∨

((40 ≤ age < 60)
∧

(elevel ∈
[1, 2, 3]))

∨
((age ≥ 60)

∧
(elevel ∈ [2, 3, 4]))

• Function 4
Class A: ((age < 40)

∧
(((elevel ∈ [0, 1, 2, 3, 4]?(25K ≤ salary ≤ 75K)) :

(50K ≤ salary ≤ 100K)))
∨

((40 ≤ age < 60)
∧

(((elevel ∈ [123])?(50K ≤
salary ≤ 100K)) : (75K ≤ salary ≤ 125K)))

∨
((age ≥ 60)

∧
(((elevel ∈

[2, 3, 4])?(50K ≤ salary ≤ 100K)) : (25K ≤ salary ≤ 75K)))
• Function 5

Class A: ((age < 40)
∧

(((50K ≤ salary ≤ 100K)?(100K ≤ loan ≤
300K)) : (200K ≤ loan ≤ 400K)))

∨
((40 ≤ age < 60)

∧
(((75K ≤

salary ≤ 125K)?(200K ≤ loan ≤ 400K)) : (300K ≤ loan ≤ 500K)))
∨

((age ≥ 60)
∧

(((25K ≤ salary ≤ 75K)?(300K ≤ loan ≤ 500K)) :
(100K ≤ loan ≤ 300K)))

• Function 6
Class A: ((age < 40)

∧
(50K ≤ (salary + commission) ≤ 100K))

∨
((40 ≤

age < 60)
∧

(75K ≤ (salary+commission) ≤ 125K))
∨

((age ≥ 40)
∧

(25K
≤ (salary + commission) ≤ 75K))

• Function 7
disposable = (0.67 × (salary + commission) − 0.2 × loan − 20K)
Class A: disposable > 0

• Function 8
disposable = (0.67 × (salary + commission) − 5000 × elevel − 20K)
Class A: disposable > 0

• Function 9
disposable = (0.67× (salary + commission)−5000× elevel−0.2× loan−
10K)
Class A: disposable > 0

• Function 10
hyears < 20 ⇒ equity = 0
hyears ≥ 20 ⇒ equity = 0.1 × hvalue × (hyears − 20)
disposable = (0.67×(salary+commission)−5000×elevel−0.2×equity−
10K)
Class A: disposable > 0
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3.5.2 Other Methods for Comparisons

For comparisons with the modified fuzzy neural network, we applied decision
tree construction algorithms C4.5 and C4.5rules [251] on the same data sets.
C4.5 and C4.5rules release 8 from the pruned trees with default parameters
were used. We also compared our results with those of a pruned feedforward
crisp neural network (NeuroRule) [200] for the classification problems from [2].
In the next two subsections, we briefly review the principles of C4.5, C4.5rules,
and NeuroRule. Experimental results will follow in the subsequent sections.

The Basics of C4.5 and C4.5rules

C4.5 is commonly regarded as a state-of-the-art method for inducing decision
trees [78], and C4.5rules transforms C4.5 decision trees into decision rules and
manipulates these rules. The heart of the popular and robust C4.5 program is
a decision tree inducer. It performs a depth-first, general to specific search for
hypotheses by recessively partitioning the data set at each node of the tree.

C4.5 attempts to build a decision tree with a measure of the information
gain ratio of each feature and branching on the attribute which returns the
maximum information gain ratio. At any point during the search, a chosen
attribute is considered to have the highest discriminating ability between the
different concepts whose description is being generated. This bias constrains
the search space by generating partial hypotheses using a subset of the di-
mensionality of the problem space. This is a depth-first search in which no
alternative strategies are maintained and in which no back-tracking is allowed.
Therefore, the final decision tree built, though simple, is not guaranteed to be
the simplest possible tree.

C4.5 uses a pruning mechanism to stop tree construction if an attribute
is deemed to be irrelevant and should not be branched upon. A χ2-test for
statistical dependency between the attribute and the class label is carried out
to test for this irrelevancy. The induced decision tree is finally converted to a
set of rules with some pruning and the generation of a default rule.

The C4.5rules program contains three basic steps to produce rules from a
decision tree:

1. Traverse a decision tree to obtain a number of conjunctive rules. Each
path from the root to a leaf in the tree corresponds to a conjunctive rule
with the leaf as its conclusion.

2. Manipulate each condition in each conjunctive rule to see if it can be
dropped or can be merged into a similar condition in another rule without
more misclassification than expected on the original training examples.

3. If some conjunctive rules are the same after step 2, then keep only one of
them.
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The final decision rules thus produced are expected to be simpler than the
original decision trees but not necessarily more accurate.

The Basics of NeuroRule

NeuroRule is a novel approach proposed by Lu et al. [200] that exploits the
merits of connectionist methods, such as low classification error rates and
robustness to noise. It is also able to obtain rules which are more concise than
the rules usually obtained by decision trees.

NeuroRule consists of three steps:
1. Network training: a three-layer feedforward neural network is trained in

this step. To facilitate the rule extraction in the third step below, con-
tinuous attributes are discretized by dividing their ranges into subin-
tervals. The number of nodes in the input layer corresponds to the
dimensionality of subintervals of the input attributes. The number of
nodes in the output layer equals the number of classes to be classified.
The network starts with the oversized hidden layer and works towards
a small number of hidden nodes as well as the fewest number of input
nodes. The training phase aims to find the best set of weights that
classify input tuples with a sufficient level of accuracy. An initial set of
weights are chosen randomly from the interval [−1, 1]. Weight updating
is carried out by a quasi-Newton algorithm. The training phase is ter-
minated when the norm of the gradient of the error function falls below
a prespecified value. A penalty function is used to prevent weights from
getting too large or too many with very small values.

2. Network pruning: the pruning phase aims to remove redundant links
and nodes without increasing the classification error of the network.
The pruning is achieved by removing nodes and links whose weights
are below a prespecified threshold. A smaller number of nodes and
links left in the network after pruning provide for extracting concise
and comprehensive rules that describe the classification function.

3. Rule extraction: this phase extracts classification rules from the pruned
network. The rule extraction algorithm first discretizes the activation
values of hidden nodes into a manageable number of discrete values
without sacrificing the classification accuracy of the network. The al-
gorithm consists of four basic steps:
(a) A clustering algorithm is applied to find clusters of activation values

of the hidden nodes.
(b) The discretized activation values of the hidden nodes are enumer-

ated and the network outputs are computed. Rules that describe
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the network outputs in terms of the discretized hidden unit activa-
tion values are generated.

(c) For each hidden node, the input values that lead to it are enumer-
ated and a set of rules is generated to describe the hidden units’
discretized values in terms of the inputs.

(d) The two sets of rules obtained in the previous two steps are merged
to obtain rules that relate the inputs to the outputs.

The resulting set of rules is expected to be smaller than the one pro-
duced by decision trees but with generally more conditions per rule
than that of decision trees.

3.5.3 Experimental Results

For each experimental run, the errors for all the groups are summed to obtain
the classification error. Table 3.2 shows the overall accuracy on each test
data set and the number of rules for all three approaches for the 10 testing
problems.

Table 3.2. The overall accuracy on each test data set for the problems from [2],
with a compact rule base. The FNN uses the following parameters: learning rate
η = 0.1, maximum number of rules = 20, degree of overlapping of membership
functions = 0.8, and maximum number of iterations k = 200.

Fnc. Accuracy (%) No. of rules

NR C4.5 FNN NR C4.5 FNN

1 99.9 100 100 2 3 2

2 98.1 95.0 93.6 7 10 5

3 98.2 100 97.6 7 10 7

4 95.5 97.3 94.3 13 18 8

5 97.2 97.6 97.1 24 15 7

6 90.8 94.3 95.0 13 17 8

7 90.5 93.5 95.7 7 15 13

8 N/A 98.6 99.3 N/A 9 2

9 91.0 92.6 94.1 9 16 15

10 N/A 92.6 96.2 N/A 10 8

Compared to NeuroRule, the modified FNN produces rule bases of less
complexity for all problems, except problems 7 and 9. The FNN gives better
accuracy for problems 1, 6, 7, and 9, but lower accuracy for the rest. Compared
to C4.5rules, the FNN gives less complex rules for all problems. The FNN gives
higher accuracy than C4.5rules on problems 6 to 10, the same for problem 1,
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and lower for the rest. The results for problems 8 and 10 were not reported
for the NeuroRule approach [200] (indicated by ‘N/A’ in Table 3.2).

To have a balanced comparison of all three approaches we have used a
weighted accuracy (WA), defined as the accuracy A divided by the number of
rule conditions C, as our main aim is to achieve a maximum compactness of
the rule base while maintaining a high accuracy. The need of the compact rule
base is twofold: we should allow for scaling of data mining algorithms to large-
dimensional problems, as well as providing the user with easily interpretable
rules.

Table 3.3 shows that the FNN performs better than NeuroRule, in
terms of WA, on all problems, except problem 7. Compared with C4.5rules,
the FNN shows better results for all problems except 10.

Table 3.3. Weighted accuracy on each test data set for NeuroRule (NR), C4.5rules
release 8 (C4.5), and the FNN for the problems from [2].

Function Weighted accuracy (WA)

NR C4.5 FNN

1 20.0 25.0 33.3

2 3.2 4.1 4.8

3 4.7 5.0 6.5

4 1.7 2.2 2.8

5 0.9 2.3 3.1

6 1.5 1.9 2.4

7 4.1 2.8 3.7

8 N/A 5.8 7.1

9 2.9 2.3 3.1

10 N/A 4.2 3.2

In Table 3.2, we attempted to obtain the most compact rule base for
the FNN to allow for easy analysis of the rules for very large databases, and
subsequently easy decision making in real-world situations.

If accuracy is more important than compactness of the rule base, it is
possible to use the FNN with more strict accuracy requirements, i.e., a higher
threshold for pruning the rule base, thereby producing more accurate results
at the expense of a higher rule base complexity; the classification result based
on this requirement is shown in Table 3.4.

Actually, the result in Table 3.4 is a special case where we simply want
to achieve higher accuracy. More rules are produced compared with NeuroRule
and C4.5rules. For problem 1, compared with the result in Table 3.2, more
rules are involved to achieve 100% accuracy, which means that redundant
rules are produced as the threshold for rule base compactness decreased. This
is only acceptable when accuracy is more important than compactness of
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the rule base as indicated above. For most cases, the final decision regarding
complexity versus accuracy of the rule base is application specific.

Table 3.4. The overall accuracy on each test data set with a higher accuracy for the
problems from [2]. The FNN uses the following parameters: learning rate η = 0.1,
maximum number of rules = 200, degree of overlapping of membership functions
= 0.8, maximum number of iterations k = 200.

Fnc. Accuracy (%) No. of rules

NR C4.5 FNN NR C4.5 FNN

1 99.9 100 100 2 3 11

2 98.1 95.0 98.5 7 10 25

3 98.2 100 99.3 7 10 36

4 95.5 97.3 98.1 13 18 120

5 97.2 97.6 97.2 24 15 81

6 90.8 94.3 96.5 13 17 50

7 90.5 93.5 97.7 7 15 52

8 N/A 98.6 99.1 N/A 9 15

9 91.0 92.6 95.2 9.0 16 65

10 N/A 92.6 97.7 N/A 10 50

3.5.4 Discussion

Ten different experiments were conducted to test the proposed fuzzy neural
network on various data mining problems. The results have shown that our
FNN is able to achieve an accuracy comparable to both feedforward crisp
neural networks and decision trees, with more compact rules compared to
both feedforward neural networks and decision trees for most testing cases.
Our FNN is also able to achieve a higher accuracy on most data sets compared
to both feedforward neural networks and decision trees if a compact rule base
is not required.

With a weighted accuracy, defined earlier as the accuracy divided by
the number of rule conditions, our FNN outperforms both feedforward crisp
neural networks and decision trees in almost every case.

Compared with the FNN proposed by Frayman and Wang [93], our
FNN achieved a similar accuracy and compactness of the rule set as shown
in Table 3.5. However, Frayman and Wang’s FNN used only fuzzy similarity
measure to remove irrelevant inputs; our FNN has a much simpler and effective
input selection approach, which combines fuzzy similarity measure and an
additional ranking-based selection method.

We also found that incremental online learning of the proposed fuzzy
neural network requires less time compared to offline training of feedforward
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Table 3.5. A comparison with the FNN in [93], on the overall accuracy of each test
data set and the rule base compactness for the problems from [2].

Fnc. Accuracy (%) No. of rules

FNN in [93] Modified FNN FNN in [93] Modified FNN

1 100 100 2 2

2 94.0 93.6 5 5

3 97.3 97.6 5 7

4 93.3 94.3 9 8

5 93.9 97.1 5 7

6 96.2 95.0 8 8

7 98.7 95.7 11 13

8 99.6 99.3 3 2

9 98.6 94.1 11 15

10 97.7 96.2 8 8

crisp neural networks due to the local updating feature of fuzzy logic, i.e., our
FNN only updates the rules applicable to the current data while a feedforward
crisp neural network globally updates the network. Our FNN also eliminates
the need for a separate phase to extract symbolic rules in both decision trees
and feedforward crisp neural networks.

The low accuracy obtained by C4.5rules in the above cases stems from
the use by decision trees, such as C4.5rules, of some form of probability esti-
mates for the quality of the rules, most commonly using the relative frequency
of data occurrence. These unreliable probability estimates often result in high
error rates for classes with less training data. In contrast to decision trees
like C4.5rules, the proposed FNN inductive learning is not affected by such
a problem. This is due to the fact that our FNN treats all classes with equal
importance, while decision trees give preference to more commonly occurring
classes and treat classes with less data as less important.

Our proposed FNN can easily make use of existing knowledge. When-
ever there exists expert knowledge in the database, it is advantageous to be
able to use it. It is relatively difficult to incorporate domain knowledge into
crisp neural networks [109][314], while it is easy to incorporate domain knowl-
edge into the proposed FNN.

3.6 Classifying Cancer from Microarray Data

3.6.1 DNA Microarrays

DNA microarrays are a new biotechnology which allows biological researchers
to monitor thousands of genes simultaneously [274]. Before the appearance of
microarray technology, one traditional molecular biology experiment usually
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works on only one gene, which makes it difficult to have a “whole picture” of
an entire genome. With the help of DNA microarrays, it becomes possible to
monitor, analyze, and compare the expression profiles of thousands of genes
simultaneously.

DNA microarrays have been used in various fields such as gene discov-
ery, disease diagnosis, and drug discovery. From the end of the last century
cancer classification using gene expression profiles has attracted great atten-
tion in both the biological field and the engineering field. Compared with
traditional tumor diagnostic methods based mainly on the morphological ap-
pearance of the tumor, the method using gene expression profiles is more
objective, accurate, and reliable. More importantly, some tumors (for exam-
ple lymphomas) have subtypes which have very similar appearance and are
very hard to be classified through traditional methods. It has been proved that
gene expression has good capability to clarify these previous muddy problems
[5].

Developing accurate and efficient markers based on gene expression
data thus becomes a problem that draws attention from both biological and
engineering fields. Recent approaches to this problem include artificial neural
networks [173], support vector machines [34], k-nearest neighbors [304], near-
est shrunken centroids [306], and so on.

It is both useful and challenging to find the important genes that con-
tribute most to the reliable classification of cancers and provide proper al-
gorithms to make a correct prediction based on the expression profiles of
those genes. Such work will benefit the early diagnosis of cancers and will
help doctors to choose proper clinical treatment. Furthermore, it also helps
researchers to find the relationship between those kinds of cancers and the
important genes.

DNA microarrays, which are also called gene chips or DNA chips, are
valuable tools in areas of research that require the identification or quan-
tization of many specific DNA sequences in complex nucleic acid samples.
Microarrays are, in principle and practice, extensions of hybridization-based
methods which have been used for decades to identify and quantify nucleic
acids in biological samples [87].

On a microarray, samples of interest are labelled and allowed to hy-
bridize to the array; after a sufficient time for hybridization and following
appropriate washing steps, an image of the array is acquired and the repre-
sentation of individual nucleic acid species in the sample is reflected by the
amount of hybridization to complementary DNAs immobilized in known po-
sitions on the array.

The idea of using ordered arrays of DNAs to perform parallel hybridiza-
tion studies is not in itself new; arrays on porous membranes have been in use
for years [290]. However, many parallel advances have occurred to transform
these rather clumsy membranes into much more useful and efficient meth-
ods for performing parallel genetic analysis [87]. First, large-scale sequencing
projects have produced information and resources that make it possible to
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Fig. 3.10. The process of making microarrays.

assemble collections of DNAs that correspond to all, or a large fraction of,
the genes in many organisms from bacteria to humans. Second, technical ad-
vances have made it possible to generate arrays with very high densities of
DNAs, allowing for tens of thousands of genes to be represented in areas
smaller than standard glass microscope slides. Finally, advances in fluorescent
labelling of nucleic acids and fluorescent detection have made the use of these
arrays simpler, safer, and more accurate.

An illustration for the process of making a microarray chip is as shown
in Fig. 3.10. The microarray chip is made by spotting a large number of cDNAs
onto a small glass slide. Then, the cDNAs hybridize with reference mRNAs.
In such experiments, the data for each gene (spot) consist of two fluorescence
intensity measurements, (R, G), representing the expression level of the gene
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in the red (Cy5) and the green (Cy3) labelled mRNA samples, respectively
(besides the most commonly used dyes, Cy3 and Cy5, other dyes may also
be used). Through the expression value ratio R/G, the molecular differences
of those genes can be analyzed. To some degree, gene expression is just like
the “fingerprint” of genes; although it does not contain a large quantity of
information of genes as a ‘photograph’ does, it can reflect the characters of
genes at the molecular level.

From the point of view of machine learning and statistical learning,
cancer classification using gene expression profiles is a challenging problem.
For a typical such problem, there are usually tens to over one hundred samples
(experiments) in one data set. At the same time, usually several to tens of
thousands of genes take part in the experiments. Therefore, such a problem
becomes a pattern recognition problem with a relatively small number (usually
20-150) of patterns and very high dimension (usually 2000—10000) of those
patterns. To lead such a pattern recognition problem to an optimal solution,
appropriate algorithms and software tools should be designed.

In fact, a number of different approaches such as k-nearest neighbors
[352], support vector machines [34][114], artificial neural networks [173], and
some statistical methods have been applied to this problem since 1995. Among
these approaches, some obtained very good results. For example, Khan et al.
classified small round blue cell tumors (SRBCTs) with 100% accuracy by
using 96 genes in 2001 [173]. Tibshirani et al. successfully classified SRBCTs
with 100% accuracy by using only 43 genes in 2002 [306]. They also classified
three different subtypes of lymphoma with 100% accuracy by using 47 genes
[306]. In 2002, Ando et al. [7] developed a FNN for the prediction of survival
of DLBCL patients [5]; they achieved 93% accuracy with four genes. In 2003,
Honda et al. [142] applied another FNN-based software, GeneFIS, for cancer
outcome prediction of DLBCL patients [259]. They achieved 73.4% accuracy
by using four genes.

However, we still need to further improve the present algorithms, be-
cause usually two criteria may be used to evaluate the effectiveness of these
cancer classification methods, i.e., the classification accuracy and the number
of genes used by the classifier. For a cancer classifier, the fewer the genes
used, the lower the computational burden. A reduced number of genes can
significantly increase the classification accuracy, because of the reduction or
the absence of irrelevant genes acting as ‘noise’ for the classifier. Perhaps
more importantly, once a smaller subset of genes is identified as relevant to
a particular cancer, it helps biomedical researchers focus on these genes that
contribute to the development of the cancer. Therefore, finding the smallest
gene subsets that can ensure highly reliable classification results becomes a
problem of both theoretical and practical importance.
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3.6.2 Gene Selection

Gene expression data are very high-dimensional data. The dimension of the
input patterns is determined by the number of genes used. In a typical mi-
croarray experiment, usually several thousands (for example 6000) of genes
take part. Consequently, the dimension of the patterns is several thousands.
However, only a part of the genes contribute to classification; some others even
act as ‘noise’. Gene selection can eliminate the influence of such ‘noise’ genes.
In the meanwhile, once a smaller subset of genes is identified as relevant to
a particular cancer, it helps biomedical researchers focus on these genes that
contribute to the development of the cancer. Finally, fewer genes used mean
a lower computational burden for the classifier. The process of gene selection
is ranking the genes’ importance for classification and then picking out the
genes with high ranks.

As a critical step for cancer classification, gene selection has been stud-
ied intensively in recent years. There are two main approaches; one is principal
component analysis (PCA), perhaps the most widely used method; the other
is t-statistics, which has been more and more widely accepted. In important
papers [5][173][243], PCA was used. The basic idea of PCA is to find the most
‘informative’ genes that contain the main information of the data set. An-
other approach is based on a statistical approach, t-test, which is a method
to measure the difference between two groups. Thomas et al.[304] suggested
this method. Tusher et al. [320] and Pan [236] also proposed their method
based on the t-test, respectively. Besides these two main methods, some other
methods have also been used. For example, a method called Markov blanket
is recommended by Xing et al. [350]. Li et al. [192] applied another method,
which combined genetic algorithm and k-nearest neighbors. In this book, we
chose a t-test based gene-selection method, which achieved a better result
compared to other methods.

PCA for Gene Selection

The principal component analysis aims at reducing the input dimension by
transforming the input space into a new space described by principal compo-
nents (PCs). All the PCs are orthogonal and they are ordered according to
the absolute value of their eigenvalues. The kth PC is the vector with the kth
biggest eigenvalue. By ignoring the vectors with small eigenvalues, the input
space’s dimension is reduced.

In fact, the PCs indicate the directions with largest variations of input
vectors. Because PCA chooses vectors with the largest eigenvalues, it can cover
directions in which the largest variations of the vectors happen in the vector
space. In the direction determined by the vectors with small eigenvalues, the
variations of the vectors are also very small. In a word, PCA intends to capture
the most informative directions.
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We tested PCA [58][59] as the gene selection scheme in the lymphoma
data set [5]. We chose 62 genes from 4026 genes in the data set by using PCA.
Then, we ranked those genes according to their eigenvalues (absolute values).
Finally, we used our proposed fuzzy neural network to classify the lymphoma
data set. At first, we randomly divided the 62 samples into two parts, 31
samples for training and the other 31 samples for testing. We then added the
selected 62 genes one by one to the FNN according to their eigenvalue ranks
starting with the gene ranked 1. That is, we first used only a single gene that
is ranked 1 as the input to the FNN. We trained the FNN with the training
data set and subsequently tested the FNN with the test data set. We repeated
this process with the first two genes, then three genes, and so on. Fig. 3.11
shows the testing error rate and the training error rate. From the results,
it is found that the classifier cannot reach 100% accuracy for both training
data set and the testing data set. The best testing accuracy is 92.31% that
happened when six or 44 genes were input to the classifier. Our t-test-based
classification results will be shown in the next section, which are much better
than the PCA approach.

t-statistics-Based Approach

A t-statistics-based method can be used to measure the difference between
two groups. For example, two groups, x1 and x2 have n1 and n2 samples,
respectively. x1 and x2 are the means of x1 and x2. A typical t-statistics (t)
between group x1 and group x2 can be described as follows [77]:

t =
x1 − x2

Sp ·
√

1
n1

+ 1
n2

, (3.22)

where:

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
, (3.23)

S2
i =

∑ni

j=1(xij − xi)2

ni − 1
i=1,2. (3.24)

The absolute value of t can tell us the distinction between the distri-
butions of these two groups. In view of this point, we consider searching for
the genes which have the largest distinction between different cancers with
the help of t-statistics.

One challenge is that a gene expression data set usually has more than
two classes, but t-statistics can only be applied to two groups. Therefore, we
consider picking out the genes which show the largest distinction between one
specific class and the rest of the other classes. Thus, we define a new factor
(TS) for gene selection by modifying the typical t-statistics [59]. The TS of
gene i is defined as follows:
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TSik = | xik − xik−else

Si

√
1

nk
+ 1

n−nk

|, (3.25)

where:

xik−else =

∑
j,j /∈Ck

xj

n − nk
, (3.26)

S2
i =

1
n − K

∑
k

∑
j∈Ck

(xij − xik)2. (3.27)

The number of classes is K. For each class Ck, it has nk samples. The
total number of samples is n. The expression value of gene i in sample j is
denoted as xij . The mean expression value in class k for gene i is represented
as xik and xik−else is the mean expression value for gene i in all the classes
except Ck. The pooled within-class standard deviation for gene i is denoted
as Si. Actually, TS used here is a t-statistics between a specific class and the
centroid of all the remaining classes. A gene ranking result of the lymphoma
data set using TS is shown in Table 3.6.

From the definition of TS, it is found that each gene has K different
TSs. In fact, this enables us to design different gene selection schemes. If we
use the maximum of these TSs for a specific gene as the mark to rank genes,
we get the genes which are the most capable of classifying a specific class. If
we use the sum of these TSs for a specific gene as the mark, we get the genes
which have good general classification capability. Here, we use the maximum
scheme. That is, the maximum of TSik is used as the mark to rank genes.
Practical experiments in the next section will prove that this scheme works
quite well for our FNN classifier and gets results much better than the PCA
approach [58].

3.6.3 Experimental Results

In this section, we will analyze four well-known gene expression data sets
[58][59], which are the small round blue cell tumors (SRBCTs) [173], the
lymphoma data set [5], the leukemia data set [121], and the liver cancer data
set [51].

Lymphoma Data Set

This data set [5] can be obtained from the website http://llmpp.nih.gov/lymp-
homa. Expression profiles of 62 lymphoma samples were produced with a
“Lymphochip” containing 17856 cDNA clones. A subset of 4026 clones was
selected by the authors for being ‘well measured’ across the samples. The
samples represent the following types of lymphoid malignancies: diffuse large
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B-cell lymphoma (DLBCL, 42 samples), follicular lymphoma (FL, nine sam-
ples), and chronic lymphocytic leukemia (CLL, 11 samples). In this data set, a
small part of the data is missing. A k-nearest neighbor algorithm was applied
to fill those missing values [316].

As a first step to select important genes for classification, we ranked the
entire 4026 genes according to their t-scores (TSs). Then we picked out the
196 genes with the highest t-scores (Table 3.6). In this book, we named every
gene by its importance rank. For example, gene 3 means the gene ranked 3 in
Table 3.6. Through its ID in the microarray (for example GENE1622x), the
real name of each gene can be found on the website of the lymphoma data set
[5]. We then used the proposed fuzzy neural network to classify the lymphoma
microarray data set.

We randomly divided the 62 samples into two parts, 31 samples for
training and the other 31 samples for testing. We then added the selected 196
genes one by one to the FNN according to their t-score ranks starting with
the gene ranked 1 in Table 3.6. That is, we first used only a single gene that
is ranked 1 as the input to the FNN. We trained the FNN with the training
data set and subsequently tested the FNN with the test data set. We repeated
this process with the first two genes in Table 3.6, then three genes, and so on.
We found that the FNN performed very well: it can reach 100% accuracy for
all the training and testing data sets with only the first six genes in Table 3.6.
The training error and the testing error of the classification for the lymphoma
data set are shown in Fig. 3.12.

Here the 100% accuracy for the training data set indicated that the
FNN fits the training data very closely, whereas the 100% accuracy for the
testing data ensures the strong generalization ability of the FNN. As we re-
quired 100% accuracy for both training and testing data sets, this approach
will not suffer from the overfitting problem.

SRBCT Data Set

The small round blue cell tumors (SRBCTs) data set [173] is a widely ref-
erenced data set. This group of highly malignant neoplasms accounts for ap-
proximately 10% of all solid tumors to affect children under the age of 15
years, based on incidence. They are generally composed of small round cells
that appear blue when stained by conventional histopathological processes.
Owing to their morphological similarities, unambiguous clinical diagnosis is
difficult. Nevertheless, SRBCTs display highly diverse biological behaviors and
therefore early diagnosis is essential in order to select an appropriate therapy.

The expression data set for the SRBCT includes four types of cancers,
neuroblastoma (NB), rhabdomyosarcoma (RMS), non-Hodgkin lymphoma
(NHL), and the Ewing family of tumors (EWS). There are 23 EWS sam-
ples, 8 BL samples, 12 NB samples, and 20 RMS samples in the data set. The
expression profiles of 2308 genes are available in the data set.
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A similar approach is applied to the SRBCT data set. Firstly, we se-
lected out the 30 genes with the highest t-scores (Table 3.7). Then, we applied
the proposed fuzzy neural network as the classifier to the SRBCT microarray
data set. As provided in the SRBCT data set, there are 63 samples for train-
ing and 20 samples for testing. We found that the proposed FNN can achieve
100% accuracy for both the training and the testing data sets with only the
first seven genes in Table 3.7. The plots for the training error and the testing
error are shown in Fig. 3.13.

Liver Cancer Data Set

The liver cancer data set [51] is available at the authors’ website (http://geno-
me-www.stanford.edu/hcc/). We processed the data set to classify non-tumor
liver samples and hepatocellular carcinoma (HCC) samples. After some pre-
processing steps [51], the authors gave the expression profiles of 1648 impor-
tant genes. The data contains 156 samples in total. Among them, 82 are HCC;
the other 74 are non-tumor liver samples. In this data set, there are some miss-
ing values. We used the k-nearest neighbor method to fill those missing values
[316].

In the liver cancer data set, we followed the same steps as before. We
found that the proposed FNN can achieve 100% accuracy for both the training
and the testing data sets with only 24 genes. The plots for training error and
testing error are shown in Fig. 3.14.

Leukemia Data Set

The Leukemia data set [121] can be obtained at http://www-genome.wi.mit.e-
du/cgi-bin /cancer/publications. The samples in this data set belong to two
types of leukemia, acute myeloid leukemia (AML) and acute lymphoblastic
leukemia (ALL). Among these samples, 38 of them are used for training; the
other 34 independent samples are for testing. The entire leukemia data set
contains the expression information of 7129 genes. Different from the cDNA
microarray data, the Leukemia data is oligonucleotide microarray data.

Because such expression data are raw data, i.e., the unprocessed data,
we need to normalize it to reduce the systemic influence induced by the dif-
ferent distributions of raw data in experiments.

We followed the normalization procedure used in [83]. Three preprocess-
ing steps were applied. (a) thresholding with a floor of 100 and ceiling of 16000;
(b) filtering, exclusion of genes with max/min ≤ 5 or (max − min) ≤ 500,
max and min refer to the maximum and minimum, respectively; (c) base 10
logarithmic transformation. There are 3571 genes surviving after these three
steps. After that, the data were standardized across experiments, i.e., minus
the mean and divided by the standard deviation of each experiment.
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In the Leukemia data set, we followed the same procedure as before. We
found that the proposed FNN can achieve 100% accuracy for both the training
and the testing data sets with only 46 genes. The plots for the training error
and the testing error are shown in Fig. 3.15.

Discussion

Until now, the best published result on cancer classification with gene expres-
sion data is from the Laboratory for the Statistical Analysis of Microarray Data
in Stanford University (http://www-stat.stanford.edu/˜tibs/lab/index.html).
In 2002, they obtained 100% classification accuracy in the SRBCT data set
with 43 genes [306]. They also obtained 100% classification accuracy in the
lymphoma data set in the same year [306]. These results are the best published
results. Their statistical method is named the nearest shrunken centroid. The
software (PAM) can be obtained from their web site [306].

To make a comparison, we also analyzed the SRBCT and the lym-
phoma data sets with the nearest shrunken centroid method. The results of
the SRBCT data set and the lymphoma data are shown in Fig. 3.16 and Fig.
3.17, respectively. Fig. 3.17 is a little different from the result in [306] because
only 58 samples are used in [306]. However, we used all the 62 samples given
in Fig. 3.17, which makes the comparison more reasonable.

In 2001, Khan et al. [173] successfully classified the SRBCT data set
with 100% accuracy by using 96 genes. In their opinion, this is the first ap-
plication of an artificial neural network (ANN) for cancer classification using
gene expression data.

In Table 3.8, we made a comparison of the classification result of our
FNN classifier with the nearest shrunken centroid [306] and the ANN classifier
proposed by Khan et al. [173]. In this table, we found that all the three
classifiers can obtain 100% classification accuracy, but the number of genes
used for classification shows great differences. Our FNN classifier uses only
seven genes, in sharp contrast with 96 genes used by the ANN and 43 genes
used in the nearest shrunken centroid.

In Table 3.9, a similar comparison is made for the classification result
of the lymphoma data set. We also find that our FNN classifier uses much
fewer genes to obtain 100% classification accuracy than the nearest shrunken
centroid. Compared with other classifiers, our proposed fuzzy neural network
classifier has a high accuracy with a fewer number of genes in most cases.

As we mentioned in the previous part, the number of genes used to
classify different cancers is a factor of crucial importance. A smaller number
of genes helps researchers directly focus their attention on some specific genes,
which perhaps will lead to the discovery of deep reasons for the development
of cancers and the discovery of drugs. From this point of view, our FNN shows
great superiority over other published classifiers.
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3.7 A Fuzzy Neural Network Dealing with the Problem
of Small Disjuncts

3.7.1 Introduction

Despite many advantages in data mining approaches, such as classification
trees and feedforward neural networks using back-propagation-type learning
rules, some aspects require improvements. A notable problem is known as the
problem of small disjuncts, where the induced rules that cover a small amount
of training cases often have high error rates. The purpose of this section is to
show that a dynamically constructed recurrent fuzzy neural network can deal
effectively with this problem [96].

. Decision trees, such as C4.5 [249], are generated through symbolic in-
ductive algorithms [30][249] and use the maximum generality bias to achieve
a high predictive accuracy on disjuncts that cover a large proportion of train-
ing instances (large disjuncts). However, the use of a maximum generality
bias often results in high error rates on disjuncts that cover a small number
of training instances (small disjuncts). The low accuracy in the latter cases
stems from the use by decision trees such as C4.5 of some form of probability
estimates (most commonly the relative frequency) to estimate the quality of
inductive rules. The unreliable probability estimates from a small number of
training instances resulted in the problem of small disjuncts, where specific
rules often produce high error rates [141][310][341][342].

Some remedies exist for C4.5 to overcome the problem of small dis-
juncts, for example, modifying the original Bayes-Laplace formula [250], and
using a composite learner consisting of C4.5 and an instance-based learning
method [3] for small disjuncts [310]. Another possibility is to assign different
misclassification costs for different classes that in effect will change the original
frequency of data. However, this is not a straightforward task as, for example,
the instance-based learning method suffers from a similar problem, termed
the problem of atypicality [311]. Thus, the problems of small disjuncts and
atypicality can be seen as manifestations of an intrinsic problem in learning
systems. In this section, we will approach the problem of small disjuncts us-
ing a fuzzy neural network that does not use a probability estimate in its rule
induction. Thus, it should not depend on a relative frequency of a particular
class in the overall data set.

3.7.2 The Structure of the Fuzzy Neural Network Used

The fuzzy network used in this section consists of four layers [93]–[99], i.e., the
input, the input membership function, the rule, and the output layers. The
input nodes represent input variables consisting of the current inputs and the
previous outputs. This recurrent structure provides the possibility to include
temporal information, i.e., the network learns dynamic input-output mapping
instead of the static mapping in feedforward neural networks.
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In the input layer, each input node is connected to all membership
function nodes for this input. The input membership functions act as fuzzy
weights between the input layer and the rule layer. Piecewise-linear triangu-
lar membership functions that correspond to second-order B-splines [35] are
used. This type of membership functions is simple to implement and is com-
putationally efficient. The left-most and right-most membership functions are
shouldered to cover the whole operating range of the input.

Rule node i represents fuzzy rule i = 1, 2, ..., r:

IF x1 is Ai
x1

AND ... xn is Ai
xn

AND y1(k − 1) is Ai
y1

AND ... ym(k − 1) is Ai
ym

THEN y1 = wi
1 , ... , ym = wi

m . (3.28)

Here xj (j = 1, 2, ..., n), and yl (l = 1, 2, ...,m), are the inputs and the outputs,
respectively. wi

l is a real number. Ai
q (q = x1, x2, ..., xn, y1, y2, ..., ym) is the

membership function of the antecedent part of rule i for node q in the input
layer, and k is the time.
Each rule node is connected to all input membership function nodes and out-
put nodes for this rule. Links between the rule layer and the output layer, and
the input membership functions are adaptive during learning. The member-
ship value µi of the premise of the ith rule is calculated as fuzzy AND using
the product operator:

µi = Ai
x1(x1) · Ai

x2(x2) · · · Ai
xn(xn) · Ai

y1(y1)

·Ai
y2(y2) · · · Ai

ym(ym) , (3.29)

where µi indicates the degree to which the compound antecedent of the rule
is satisfied.

The use of a product operator makes fuzzy inference fully differentiable
at any point [229][257]. On the other hand, the use of the truncation (MIN)
operator would introduce derivative discontinuities both along the lines par-
allel to the input axes and along the main and minor diagonals [35]. The
relational surface in this case would also have large areas where the system
is not sensitive to any changes in input, and the output of the fuzzy system
is constant in these regions. Therefore, fuzzy inference that uses truncation
operators is not inherently robust; rather, the information lost during their
operation produces an undesirable fuzzy relational surface [35].

In addition, the use of the product operator for fuzzy AND produces
a smooth output surface, in contrast with the commonly used fuzzy MIN op-
erator. The product operator forms multivariate membership functions. Such
membership functions retain more information than when the MIN operator
is used. The latter scheme retains only one piece of information, whereas the
product operator combines n pieces [35].
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In the output layer, each node receives inputs from all rule nodes con-
nected to this output node. The output yl of the fuzzy inference is obtained
using the weighted average (or center of gravity defuzzification):

yl =

∑
i

µiw
i
l∑

i

µi
. (3.30)

The use of a weighted average (following the simplified fuzzy inference) pro-
duces a smoother output than the mean of maxima (MOM) defuzzification
method and greatly reduces both the computational cost and the storage re-
quirement of the algorithm [35].

The FNN structure generation and learning algorithms are as follows.
Initially, n + m nodes for the input layer and m nodes for the output layer
are created. Here n and m are the numbers of the input variables (attributes)
and the output variables (classes), respectively. Next, two equally spaced in-
put membership functions are added along the operating range of each input
variable. In such a way these membership functions satisfy ε-completeness,
which means that for a given value of x of one of the inputs in the operat-
ing range, we can always find a linguistic label A such that the membership
value µA(x) ≥ ε. If the ε-completeness is not satisfied there may be no rule
applicable for a new data input. The initial rule layer is created using Eq.
(3.28).

The network is trained using the following general learning rule:

yi
l(k + 1) = yi

l(k) − η
∂εl

dyi
l

. (3.31)

The learning rules for wi
l and Ai

j are:

wi
l(k + 1) = wi

l(k) − η
∂εl

∂wi
l

, (3.32)

for adaptation of the weights between the rule layer and the output layer, and

Ai
q(k + 1) = Ai

q(k) − η
∂εl

∂Ai
q

, (3.33)

for adaptation of membership functions (fuzzy weights). Here η is the learning
rate.

The objective is to minimize an error function:

εl =
1
2
(yl − ydl)2 . (3.34)

Here yl is the current output and ydl is the target output.
The learning rate η is variable: a relatively large learning rate to en-

hance the learning speed is used initially, i.e., η = 0.01. Whenever the error
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ε(t) starts increasing, the learning rate is reduced according to the following
iterative formula:

ηnew = rc ηold . (3.35)

Here rc is a coefficient in the range (0, 1). Such a decreasing learning rate
algorithm can improve the speed of convergence, resulting in substantial re-
duction in training time, as well as in improvements in learning performance
(accuracy).

The following recursive procedure is employed next. If the degree of
overlapping of membership functions is greater than a specified threshold (e.g.,
0.9), those membership functions are combined. The following fuzzy similarity
measure [80] is used:

E(A1, A2) =
M(A1 ∩ A2)
M(A1 ∪ A2)

. (3.36)

Here ∩ and ∪ denote the intersection and union of two fuzzy sets A1 and A2,
respectively. M(·) is the size of a fuzzy set and 0 ≤ E(A1, A2) ≤ 1.

If an input variable ends up with only one membership function, which
means that this input is irrelevant, delete the input. Irrelevant inputs can thus
be eliminated and the size of the rule base can be reduced. Combining the
membership functions is also done to eliminate poor membership functions
and to replace them with new ones that are likely to perform better.

If the classification accuracy is above or if the number of rule nodes is
below the respective prespecified threshold, the algorithm stops. Otherwise,
add an additional membership function for all inputs at the point of the max-
imum output error. By firstly eliminating the errors whose deviation from the
target values is the greatest, the output error can be reduced more efficiently
and the convergence of the network can be substantially improved.

Since we would like to find a small set of simple and accurate rules,
there is a need to achieve a maximum compactness of the rule base while
maintaining a high accuracy. The need of the compact rule base is twofold:
it should allow for scaling of data mining algorithms to large-dimensional
problems, as well as providing the user with easily interpretable rules.

We therefore also have a pruning phase in the algorithm. The gener-
ated rules are evaluated for accuracy and generality. A weighting parameter
between accuracy and generality, the rule applicability coefficient (weighting
of the rules) (WR), is used. It is defined as the product of the number of
the rule activation RA by the accuracy of the rule A. All rules whose rule ap-
plicability coefficient WR falls below a predefined threshold are deleted. When
a rule node is deleted, associated input membership functions and links are
deleted as well. By varying the WR threshold the user is able to specify the
degree of rule base compactness. In such a way, the size of the rule base can
be kept minimal. Thus, effectively both construction and pruning phases are
employed in the overall algorithm.
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3.7.3 Experimental Results

We tested the FNN method on a car evaluation database from the Machine
Learning Repository at the University of California, Irvine [23]. The car evalu-
ation database was derived from a simple hierarchical decision model [25][363].
The reason for using this database is to exemplify the problem of small dis-
juncts when the data distribution is skewed.

The car evaluation database contains examples with the structural in-
formation removed, i.e., directly relates a car to six input attributes: buying,
maint, doors, persons, lug-boot, and safety. The database has 1728 instances
that completely cover the attribute space, six attributes and four classes. The
attribute values are: buying = {v-high, high, med, low}, maint = {v-high,
high, med, low}, doors = {2, 3, 4, 5-more}, persons = {2, 4, more}, lug-boot
= {small, med, big}, and safety = {low, med, high}. The class distribution is
as follows: class unacc = 1210 (70.0%), acc = 384 (22.2%), good = 69 (4.0%),
vgood = 65 (3.8%). The data set was randomly split into two equal sets:
training and testing, with the same distribution of classes in each set.

For comparison with the FNN approach, we used C4.5Rules [251] to
make the results comparable with the rule-based FNN. C4.5Rules release 8
with default parameters was used. The performance of the FNN and C4.5Rules
on a car evaluation database is given in Table 3.10.

The FNN gives higher accuracy than C4.5Rules for the whole database
as well as per each class, with a less complex rule base for class ‘acc’. While
both the FNN and C4.5Rules give quite similar accuracy for classes ‘unacc’
and ‘acc’, the FNN gives much higher accuracy for classes ‘good’ and ‘vgood’.
Note that, the frequency for class ‘good’ in the database is 4.0%, and for class
‘vgood’ 3.8%.

3.8 Summary

In this chapter, we described a novel fuzzy neural network (FNN) and demon-
strated its applications to data classification problems, especially for cancer
classification based on microarray data.

The proposed fuzzy neural network combines the features of initial
fuzzy model self-generation, fast input selection, partition validation, para-
meter optimization, and rule-base simplification.

A small FNN is created from scratch, i.e., there is no need to specify the
initial network architecture, initial membership functions, or initial weights.
Fuzzy IF-THEN rules are constantly combined and pruned to minimize the
size of the network while maintaining accuracy; irrelevant inputs are detected
and deleted, and membership functions and network weights are trained with
a gradient descent algorithm, i.e., error back-propagation.

Experimental studies of synthesized data sets demonstrate that the
proposed fuzzy neural network is able to achieve accuracy comparable to or
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higher than both a feedforward crisp neural network, i.e., NeuroRule, and a
decision tree, i.e., C4.5, with more compact rule bases for most of the data
sets used in our experiments.

The FNN has achieved outstanding results for cancer classification
based on microarray data. A t-statistics-based approach is used for effective
gene selection, which is shown to have better performance than the principal
component analysis (PCA) approach. The excellent classification results for
the lymphoma data set, the small round blue cell tumors (SRBCTs) data set,
the leukemia data set, and the liver Cancer data set are shown. Compared
with other published methods, we have used a much fewer number of genes for
perfect classification, which will help researchers directly focus their attention
on some specific genes and may lead to the discovery of deep reasons for the
development of cancers and the discovery of drugs.

In addition, we described a fuzzy neural network dealing with small
disjuncts. As can be seen from the results in Table 3.10, the FNN inductive
learning (i.e., the error rate) is affected much less by the problem of small
disjuncts, in contrast to C4.5Rules. This is because the FNN treats all classes
with equal importance, whereas C4.5Rules gives preference to classes with
a higher occurrence in the data set. On the other hand, C4.5Rules treats
classes with lower support as less important (considering them as noise or
exceptions). In reality, however, classes with low occurrence in the data set
may not be noise, instead contain essential knowledge that one tries to extract
from the database. For example, for the car evaluation database used in our
experiments, the aim is not only to find which car is not suitable, but also to
find which car is the most suitable. The FNN can offer much better advice
to the user on finding cars in ‘good’ and ‘vgood’ classes, in comparison to
C4.5Rules. Thus, the FNN approach to small disjuncts can be very useful in
real-world situations, as the data of interest can often be only a small fraction
of the available data.
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Fig. 3.11. PCA classification results for lymphoma data set.
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Table 3.6. Gene importance ranking for the lymphoma data set: part of the 196
genes with the highest TSs, in the order of decreasing TSs (gene ID is defined in
[5]).

Rank Gene ID Accession number

1 GENE1610X X72755

2 GENE708X X65550

3 GENE1622X AA430369

4 GENE1641X R62612

5 GENE3320X AA830983

6 GENE707X R89392

7 GENE653X AA258849

8 GENE1636X R62612

9 GENE2391X AA937964

10 GENE2403X AA767265

... ... ...

187 GENE646X AA765853

188 GENE2180X AA828464

189 GENE506X AA836242

190 GENE632X AA761420

191 GENE844X AA504465

192 GENE629X AA740926

193 GENE2381X AA811187

194 GENE1533X AA808006

195 GENE2187X AA765843

196 GENE641X AA806641
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Fig. 3.12. The FNN classification result for the lymphoma data set with 100%
training and testing accuracy using only six genes. ( c© 2005 IEEE) We thank the
IEEE for allowing the reproduction of this figure, first appeared in [59].
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Table 3.7. Gene importance ranking for the SRBCT data set: part of the 30 genes
with the highest TSs, in the order of decreasing TSs (gene ID is defined in [173]).

Rank Gene ID Image ID

1 GENE842 810057

2 GENE1955 784224

3 GENE187 296448

4 GENE1389 770394

5 GENE509 207274

6 GENE2046 244618

7 GENE2050 295985

8 GENE255 325182

9 GENE2198 212542

10 GENE246 377461

... ... ...

25 GENE1055 1409509

26 GENE554 461425

27 GENE566 357031

28 GENE2144 308231

29 GENE836 241412

30 GENE545 1435862

Table 3.8. A comparison of classification results of ANN, the nearest shrunken
centroid, and FNN for the SRBCT data set.

Method Accuracy Number of
genes used

ANN 100% 96

Nearest shrunken centroid 100% 43

Fuzzy neural network 100% 7

Table 3.9. A comparison of classification results of the nearest shrunken centroid
and FNN for the lymphoma data set.

Method Accuracy Number of
genes used

Nearest shrunken centroid 100% 48

Fuzzy neural network 100% 6
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Fig. 3.13. The FNN classification result for the SRBCT data set with 100% training
and testing accuracy using only seven genes. ( c© 2005 IEEE) We thank the IEEE
for allowing the reproduction of this figure, first appeared in [59].

Table 3.10. Accuracy of the test data set, the number of rules, the number of
conditions for C4.5Rules release 8 (C4), and the FNN (FN) for the car evaluation
database.

Class Accur. (%) Rules Cond.

C4 FN C4 FN C4 FN

unacc 98.0 98.4 9 10 20 24

acc 72.0 79.7 25 14 97 58

good 44.1 82.9 6 8 24 28

vgood 54.5 75.0 6 7 25 31

Overall 88.4 92.7 46 39 166 141
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Fig. 3.14. FNN classification result for liver cancer data set, with 100% training
and testing accuracy using only 24 genes. ( c© 2005 IEEE) We thank the IEEE for
allowing the reproduction of this figure, first appeared in [59].
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Fig. 3.15. the FNN classification result for the leukemia data set, with 100% train-
ing and testing accuracy using only 46 genes.
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Fig. 3.16. Classification result of shrunken centroids for the SRBCT data set.
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Fig. 3.17. Classification result of shrunken centroids for the lymphoma data set.
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An Improved RBF Neural Network Classifier

4.1 Introduction

RBF neural networks [36][91][167][189][217][219][224][240] have been applied
to channel equalization, image classification, function approximation, inter-
polation, density estimation, and classification tasks.

The popularity of the RBF neural network is due to its fast training
and its global approximation capability with local responses. As with other
neural networks, constructing an RBF neural network with high classification
rates and a compact architecture but a high generalization capability is a
challenging task. It is desirable that a computational model trained on a set
of samples has both high learning and generalization capabilities. Learning
ability measures how well a learning model approximates the functional rela-
tionship between the input and the output samples used in training, whereas
generalization capability refers to how well the learning model processes new
samples, not used during training. The training error rate Etr is the error rate
that a trained model makes for the training data, whereas the test error rate
Ete is the error rate that a learning model makes for the test data. Etr and
Ete are used to measure the learning and the generalization capabilities of a
learning model, respectively.

The number of hidden units is an important parameter for constructing
RBF neural networks. Maffezzoni and Gubian [203] set the initial number of
hidden neurons as the number of training samples and then used a manual
pruning procedure to obtain an optimal number of hidden neurons. In [17][36],
trials were carried out with several prespecified numbers of hidden neurons
and the best number of hidden neurons was then selected based on the trial
results. However, it is difficult to prespecify the number of hidden units or
prune the RBF architecture from a large scale. In Roy et al. [264]’s algorithm,
the number of hidden neurons was determined dynamically while training the
RBF neural network, but the number of hidden units is still large. There
is room to reduce the complexity of RBF neural networks by reducing the
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number of hidden units. Two useful modifications [107] to the algorithm of
Roy et al. [264] are as follows:

1. Large overlaps are allowed between clusters of the same class, which reduce
the number of hidden units without degrading the performance of RBF
neural networks.

2. Dynamic determination of the overlaps between different classes.

Our simulations show that these modifications bring about improvements in
terms of both structural simplicity and classification accuracy.

4.2 RBF Neural Networks for Classification

In a classification task, for each class Ci (i = 1, 2, ..., M) with Ni samples, a
posterior probability is [22]:

P (Ci|X) =
p(X|Ci)P (Ci)

p(X)

=
p(X|Ci)P (Ci)

N∑
i′=1

p(X|Ci′)P (Ci′)
, (4.1)

where X is a data sample.
∑

Ni = N .
The probability mentioned above can be represented as an RBF neural

network with radial basis kernel functions given by [22]:

øi(X) =
p(X|Ci)

N∑
i′=1

p(X|Ci′)P (Ci′)
(4.2)

and second-layer connections which consist of one weight from each hidden
unit to the corresponding output unit, with value p(Ci). Thus, the posterior
probabilities can be approximated by the RBF neural network.

An RBF neural network may be considered as a mixture model for
representing the distribution of the data set. Assume that K radial basis kernel
functions are generated in an RBF neural network in order to represent all
the class-conditional densities. The jth kernel function can be expressed as
follows [22]:

p(X|Ci) =
K∑

j=1

p(X|j)P (j|Ci). (4.3)

The unconditional density is:
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p(X) =
N∑

i=1

p(X|Ci)P (Ci)

=
K∑

j=1

p(X|j)P (j), (4.4)

where the probabilities of the radial basis functions are:

P (j) =
N∑

i=1

P (j|Ci)P (Ci). (4.5)

The unconditional density of the input data (p(X)) can be presented
by a mixture model, in which the component densities are given by the radial
basis functions shown in Eq. (4.4).

We obtain the posterior probabilities of class membership by substitut-
ing Eq. (4.3) and Eq. (4.4) into Eq. (4.1) [22]:

p(Ci|X) =

K∑
j=1

P (j|Ci)p(X|j)P (Ci)

K∑
j′=1

p(X|j′)P (j′)

P (j)
P (j)

=
K∑

j=1

wijøj(X). (4.6)

Equation (4.6) represents an RBF neural network with K radial basis
kernel functions, in which the weights are given by [22]:

wij =
P (j|Ci)P (Ci)

P (j)
= P (Ci|j) (4.7)

and the jth kernel function is given by [22]:

øj(X) =
P (X|j)P (j)

K∑
j′=1

p(X|j′)P (j′)

= P (j|X). (4.8)

Thus, the classification of an RBF neural network can be interpreted
as the posterior probabilities represented by the radial basis functions, and
the weights connecting the hidden units with the outputs.
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4.2.1 The Pseudo-inverse Method

For a neural network classifier, training is based on its classification perfor-
mance. The MSE (mean squared error) function is usually used as the objec-
tive function in neural networks:

E =
1
2
|d − Y |2, (4.9)

where d is the target vector and Y is the output vector.
In an RBF neural network, its MSE function is as follows:

E =
1
2

N∑
n=1

M∑
m=1

{
K∑

j=0

wmjøn
j − tnm}2, (4.10)

where N is the number of patterns, M is the number of outputs, and K is
the number of hidden units. wmj is the weight connecting the jth hidden unit
with the mth output unit. øn

j represents the output of the jth kernel function
for the nth input pattern. tnm represents the target output of the mth output
unit when inputting the nth pattern.

Assume that the parameters (the number of hidden units, centers, and
widths of hidden units) of the hidden layer have been fixed at the first training
stage. weights between the hidden layer and the output layer need to be
determined. In order to minimize the MSE, Eq. (4.16) is differentiated with
respect to wmj and the derivative is set to be zero [22]:

N∑
n=1

{
K∑

j′=0

wmj′øn
j′ − tnm}øn

j = 0. (4.11)

Equation (4.11) is written in the form of a matrix:

(φT φ)WT = φTT, (4.12)

where φ, with elements øn
j , has dimensions N × K. W is an M × K matrix

with elements wmj . T has dimensions N × M and elements tnm. The matrix
φT φ in Eq. (4.12) is a square matrix with dimensions K × K. If φTφ is a
non-singular matrix, the solution to Eq. (4.12) is given [120][253] as follows:

WT = φ†T, (4.13)

where φ† is a K × N matrix known as the pseudo-inverse of φ:

φ† ≡ (φTφ)−1φT. (4.14)

It is noted that, if the matrix φTφ is singular, Eqs. (4.13) and (4.14)
do not exist, i.e., there is not a unique solution for Eq. (4.12). Redefine the
pseudo-inverse of φ as:
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φ† ≡ limε→0(φTφ + εI)−1φT, (4.15)

where I is the unit matrix. ε > 0. It is clear that the limit always exists [22],
and it can be used to minimize the MSE.

4.2.2 Comparison between the RBF and the MLP

Though both the RBF neural network [33][85][219][245] and the MLP neural
network are powerful tools in function approximation, classification, and data
mining tasks, there exist differences in their performances and applications,
which result from the differences stated as follows:

1. Activation function [22].
In RBF neural networks, the activation of a hidden unit is determined
by the transformed distance between the input pattern and the center of
the hidden unit. The transformation of the distance is by an activation
function with a localized nature, such as the Gaussian kernel function. The
activations of hidden units of MLP neural networks depend on weighted
linear summations of the inputs transformed by activation functions, such
as the sigmoidal function and the hyperbolic tangent function, which are
not local in nature.

2. Data space partition.
An MLP neural network separates the data space by hyper-planes, while
an RBF neural network generates hyper-spheres to partition the input
space. This difference is a direct consequence of the difference in activation
functions used in the RBF and MLP networks.

3. Training procedure.
The parameters of an MLP neural network are usually determined in
a single training procedure. An RBF neural network’s parameters are
typically trained in several stages. The parameters of the kernel functions
are trained first by unsupervised techniques, and the weights connecting
the hidden layer and the output layer are determined at the second stage.

4. The weights.
All weights in an MLP neural network are usually adjustable. The weights
between the input layer and the hidden layer in a typical RBF neural
network are fixed as 1’s. The weights connecting hidden units and output
units can be obtained by the linear least square (LLS) method.

5. The local minima problem.
The error function to be minimized may have numerous local minima in
the parameter space. The weights between the hidden layer and the output
layer in an RBF network can be determined by the LLS method, which
does not lead to any local minima; however, hidden neuron parameter
adjustments by clustering may cause local minima.



102 4 An Improved RBF Neural Network Classifier

4.3 Training a Modified RBF Neural Network

Our main objective is to discover hidden information from data sets, and
represent the discovered information in an explicit and understandable way.
A small RBF neural network classifier with high generalization capability is
desirable in implementing data mining tasks.

Finding the centers, widths, and weights connecting hidden nodes with
the output is the key to constructing and training the RBF classifier.

Overlapped receptive fields of hidden neurons for different classes can
improve the performance of the RBF classifier when dealing with noisy data
[203]. Kaylani et al. [170] and Bishop et al. [264] created overlapping Gaussian
kernel functions (clusters) to map out the territory of each class with a smaller
number of Gaussian functions.

In those previous methods, the clusters are formed as follows. A pattern
is randomly selected from the data set V as the initial center of a cluster. The
radius of this cluster is chosen in such a way that the ratio between the
number of patterns of a certain class (in-class patterns) and the total number
of patterns in the cluster is not less than a predefined value θ. Once this cluster
is formed, all patterns inside this cluster are ‘removed’ from the training data
set and do not participate in the formation of other clusters. The value of θ is
determined empirically and is related to an acceptable classification error rate.
Since θ determines the radii of the clusters, it also indirectly determines the
degree of overlaps between different classes. Generally, a large θ leads to small
radii of clusters; thus, it leads to small overlaps between the Gaussians for
different classes and a small classification error rate for the training data set.
Since a small classification error is desired, there usually exist small overlaps
between the Gaussians representing the clusters.

Let us consider a simple example. Suppose that θ = 0.8, i.e., there must
be at least 80% in-class patterns in each cluster. In Fig. 4.1(a), suppose that
cluster A has been formed and its members ‘removed’ from the data set V .
Suppose that pattern 2 is subsequently selected as the initial center of a new
cluster and cluster B is thus formed. Clusters C through G are then formed
subsequently in a similar fashion. We see that clusters B, C, and D are quite
small and therefore the effectiveness of the above clustering algorithm needs
to be improved.

An algorithm [107] is used to reduce the number of clusters as follows.
We first make a copy Vc of the original data set V . When a qualified cluster
(with the ratio of in-class patterns higher than θ), e.g., cluster A in Fig. 4.1(b)
(same as in Fig. 4.1(a)), is generated, the members in this cluster are ‘removed’
from the copy data set Vc, but the patterns in the original data set V remain
unchanged. Subsequently, the initial center of the next cluster is selected from
the copy data set Vc, but the candidate members of this cluster are patterns in
the original data set V , and thus include the patterns in the cluster A. When
pattern 2 is selected as an initial cluster center, a much larger cluster B, which
combines clusters B, C, and D in Fig. 4.1(a), can still meet the θ-criterion and



4.3 Training a Modified RBF Neural Network 103

can therefore be created. By allowing for large overlaps between clusters for
the same class, we can further reduce the number of clusters substantially.
This will lead to more efficient construction of RBF networks, and will be
demonstrated by computer simulations in the next section.

Overlaps between clusters of different classes affect the classification
error rate, i.e., the larger the overlaps between clusters of different classes,
often the larger the classification error rate. However, when large overlaps
between clusters of the same class are allowed, it is not expected to degrade
the classification accuracy. Since large overlaps between clusters of the same
class can help combine small clusters into larger ones, and noise may thus be
suppressed by these combinations, the accuracy of classification may even be
improved compared with the results without the modification.

A

D
C

B

G

E

F

1

2

(a)

A

B

G

F

E2

1

(b)

Fig. 4.1. A comparison between (a) existing algorithms: small overlaps between
clusters and (b) the modified algorithm with a reduced number of clusters: small
overlaps between clusters of different classes, but large overlaps between clusters of
the same class. ( c© 2005 IEEE) We thank the IEEE for allowing the reproduction
of this figure, first appeared in [100].

We therefore use the following algorithm to construct an efficient RBF
classifier, incorporating the above modification to the existing algorithms
[264][265]:

1. Initialize for training:
a) We divide the data set into three parts, the training data set, the

validation data set, and the test data set.
b) In order to derive the widths of the kernel functions, a general scale

of neighborhood δ0 is obtained by calculating the standard deviation
of the data set [264].
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2. Set phase L = 1 (L indicates the steps in one training epoch); δ(L) = δ0,
δ(1) = αδ0, where δ(L) is the initial radius of clusters at the training
phase L (the training phase indicates the status of the training epoch, in
which the initial radii of the clusters are affected), and δ is the increment
step for the radius. α is the change rate of the radius.

3. Generate Vc, a copy of the original training data set V .
4. Forming clusters:

a) Count the number of patterns in classes in Vc. If the number of pat-
terns in a class is fewer than a predefined number (which is determined
empirically), the patterns in the class will not be selected.

b) Set subphase Ls=1 (Ls indicates the shrinking degree of the radius of
cluster in a subphase training procedure), δ(Ls) = δ(L).

c) Select randomly a pattern from Vc as an initial cluster center and
search in V for all the patterns within a δ(L)-neighborhood of the
center pattern. Thus, large overlaps are permitted among clusters of
the same class.

d) Check whether the ratio between in-class patterns and the total pat-
terns in the subset is equal to or greater than a predefined value θ.
If the ratio is less than θ, set Ls = Ls + 1, and δ(Ls) = δ(Ls) − δ.
Search the patterns within a δ(Ls)-neighborhood of the selected pat-
tern. Stop only if the ratio criterion is met or if Ls ≥ 1/2α. Count the
number of epochs Ne, if Ne ≥ Di (i is the number of patterns in Vc,
D is an integer. D is empirically determined.), θ = 0.95θ. Repeat step
4, and stop when the training set Vc is empty.

5. Calculate the center and the width of each cluster: the center is the mean
pattern of all patterns in the cluster and the width is the standard devi-
ation of these patterns.

6. Obtain weights by the LLS method [22].
7. Calculate Etr (the classification error of the training set) and Ev (the

classification error of the validation set). Stop if both Etr and Ev are
smaller than a prespecified value E0. E0=EPre (EPre is a predefined value
of classification error rate. EPre=2%). Else:

If Ev(L) < Ev(L − 1), set L = L + 1 and δ(L) = δ(L) − δ/2. Go to
step 3.
If Etr(L) > Etr(L − 1) and Ev(L) > Ev(L − 1), L = L + 1, set
δ(L) = δ(L) − δ. Go to step 3.
If L > 1/α or Ev > E0 Go to step 2.

Compared to Roy et al.’s original algorithm [264][265], we have made
the following changes:

1. In step 4, large overlaps among clusters of the same class are allowed in
order to reduce the number of hidden units without reducing the classifi-
cation accuracy.
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2. In [264], six training phases were used corresponding to θ={50%, 60%,
..., 100%}, respectively. In each phase, θ is unchanged and all clusters of
this phase should meet the θ-criterion. A classification result is obtained
for this θ. The classification error rate from a phase is compared to that
in the previous phase. Whether to continue to the next training phase is
determined by a comparison in the classification results. If the classifica-
tion accuracy is better than the previous phase, training continues with a
higher θ, i.e., it is possible to obtain a higher accuracy with θ increased.
Thus, the data is trained continuously using a larger θ. Otherwise, the
training is stopped. Although a larger θ leads to a higher accuracy in the
training data set, it may lead to poorer generalization in the test data
set. In our algorithm (step 2), θ is automatically adjusted according to
the training condition, i.e., how many patterns of the class concerned are
left. With the decreasing number of patterns, θ is decreased by a certain
factor, say 0.95 in our simulations.

The aim of the modification stated above, i.e., allowing for large overlaps
among clusters of the same class, is to decrease the number of Gaussian hidden
units without reducing the classification accuracy.

The cost of the modification is increased training time. Assume that
the number of patterns in the data set is N . The number of hidden units
is M1 when allowing for large overlaps among clusters of the same class,
and the number of hidden units is M2 without allowing for large overlaps.
For a certain hidden unit k, the number of patterns in this cluster is Nk.
The processing time for one pattern is T in the training procedure. As-
sume that both algorithms (with the modification and without the modi-
fication) have the same initial conditions. The initial center of each candi-
date cluster is selected randomly. Thus, the average number of trials in the
two algorithms for searching for qualified clusters may be assumed to be the
same, say M0. With the modification, all N patterns in the data set will
be checked when searching for a qualified cluster in each trial. The time
required for one trial is thus NT . For M0 trials, the total time required
is M0NT . Without the modification, if a cluster is considered to be qual-
ified, the patterns included in this cluster will be removed from the data
set. Thus, the total time required for classification without the modification
is

∑M0
m=1 T (N − ∑m−1

k=1 Nk) = (M0N − ∑M0
m=1

∑m
k=1 Nk)T < M0NT . Thus,

more time is needed when applying the modification. However, the cost is
worthwhile in that less complicated classifiers with higher accuracy are found
in most cases.

4.4 Experimental Results

The Iris, Monk3, Thyroid, Mushroom, and Breast cancer data sets from the
UCI Repository of Machine Learning Databases [223] are used here to demon-
strate the above algorithms. Each data set is divided into three parts, i.e.,
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training, validation, and test sets. We set α = 0.1 and initial θ = 100% in
our experiments. Each experiment is repeated five times with different initial
conditions and the average results are recorded. In each run of five implemen-
tations, a data set is randomly divided into three subsets. Around 60% data
points are used for training, 20% for testing, and 20% for validation.

4.4.1 Iris Data Set

The Iris data set records the physical dimensions of three kinds of Iris flowers.
There are four attributes and 150 patterns in the Iris data set. In the 150 pat-
terns, 90 patterns are for training, 30 patterns for validation, and 30 patterns
for testing.

The four attributes are sepal length, sepal width, petal length and petal
width, which are all in centimeters. There are three classes, i.e., Iris Setosa,
Iris Versicolour, and Iris Virginica.

Table 4.1 shows that when large overlaps among clusters of the same
class are permitted, the number of hidden units is reduced from 4.6 to 3.4 on
average, and the classification error rate is maintained.

Table 4.1. Reduction in the number of hidden neurons and classification error rates
of the RBF neural network for the Iris data set when large overlaps among clusters
with the same class label are permitted (average results of five independent runs).

Performance Iris
criteria Small Large

overlaps overlaps

Training error 0% 0%

Validation error 0% 0%

Testing error 3.33% 3.33%

Number of
hidden neurons 4.6 3.4

4.4.2 Thyroid Data Set

The Thyroid data set records the medical test results of patients with thyroid
diseases. There are five attributes and 215 patterns in the Thyroid data set,
with 115 data points in the training set, 50 data points in the testing set, and
50 data points in the validation set.

The five attributes are T3-resin uptake test (a percentage), total serum
thyroxin as measured by the isotopic displacement method, total serum tri-
iodothyronine as measured by radioimmuno assay, basal thyroid-stimulating
hormone (TSH) as measured by radioimmuno assay, and the maximal absolute



4.4 Experimental Results 107

difference of the TSH value after injection of 200 micrograms of thyrotropin-
releasing hormone as compared to the basal value. The three classes are nor-
mal, hyper-thyroid, and hypo-thyroid.

Table 4.2 shows that when large overlaps among clusters of the same
class are permitted, the number of hidden units is reduced from 14.4 to 8 on
average, and the classification error rate is reduced from 6.0% to 4.8%.

Table 4.2. Same as Table 4.1, with the Thyroid data set.

Performance Thyroid
criteria Small Large

overlaps overlaps

Training error 3.65% 2.78%

Validation error 4.8% 6%

Testing error 6.0% 4.8%

Number of
hidden neurons 14.4 8

4.4.3 Monk3 Data Set

The Monk3 data set is a collection of a binary classification problem over a
six-attribute discrete domain. The data set involves learning a binary function
defined over this domain, from some training examples of this function.

There are 122 patterns in the training set and 432 patterns in the test
set. We divide the test set into 200 patterns for validation and 221 patterns
for testing since the size of the validation set affects the generalization per-
formance of RBF classifiers.

Table 4.3 shows that when large overlaps among clusters of the same
class are permitted, the number of hidden units is reduced from 33.2 to 19.6
on average, and the classification error rate increases slightly from 5.91% to
6.88%.

Table 4.3. Same as Table 4.1, with Monk3 data set.

Performance Monk3
criteria Small Large

overlaps overlaps

Training error 4.10% 4.92%

Validation error 8.0% 5.76%

Testing error 5.91% 6.88%

Number of
hidden neurons 33.2 19.6
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4.4.4 Breast Cancer Data Set

This breast cancer data set was obtained from Dr. William H. Wolberg of
the University of Wisconsin Hospitals, Madison. There are nine attributes
and 699 patterns in the Breast cancer data set. 16 patterns with missing
attributes are removed. Of the 683 patterns left, 444 were benign and the rest
were malignant. In the 683 patterns, 410 patterns are for training, 136 for
validation, and 137 for testing.

The attributes are clump thickness, uniformity of cell size, uniformity
of cell shape, marginal adhesion, single epithelial cell size, bare nuclei, bland
chromatin, normal nucleoli, and mitoses. There are two classes, i.e., benign
and malignant.

Table 4.4 shows that when large overlaps among clusters of the same
class are permitted, the number of hidden units is decreased from 31 to 11 on
average, and the classification error rate is reduced from 2.92% to 1.46%.

Table 4.4. Same as Table 4.1, with the breast cancer data set.

Performance Breast Cancer
criteria Small Large

overlaps overlaps

Training error 2.44% 0.73%

Validation error 2.92% 1.96%

Testing error 2.92% 1.46%

Number of
hidden neurons 31 11

4.4.5 Mushroom Data Set

The mushroom data set includes descriptions of hypothetical samples cor-
responding to 23 species of gilled mushrooms in the Agaricus and Lepiota
families.

There are 22 nominal attributes and 8124 patterns in the Mushroom
data set. Among the 8124 patterns, 4500 patterns are for training, 1812 are
for validation, and 1812 are for testing. There are two classes, edible and
poisonous.

The attributes are:

1. cap-shape: bell (b), conical (c), convex (x), flat (f), knobbed (k), sunken
(s)

2. cap-surface: fibrous (f), grooves (g), scaly (y), smooth (s)
3. cap-color: brown (n), buff (b), cinnamon (c), gray (g), green (r), pink (p),

purple (u), red (e), white (w), yellow (y)
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4. bruises?: bruises (t), no (f)
5. odor: almond (a), anise (l), creosote (c), fishy (y), foul (f), musty (m),

none (n), pungent (p), spicy (s)
6. gill-attachment: attached (a), descending (d), free (f), notched (n)
7. gill-spacing: close (c), crowded (w), distant (d)
8. gill-size: broad (b), narrow (n)
9. gill-color: black (k), brown (n), buff (b), chocolate (h), gray (g), green (r),

orange (o), pink (p), purple (u), red (e), white (w), yellow (y)
10. stalk-shape: enlarging (e), tapering (t)
11. stalk-root: bulbous (b), club (c), cup (u), equal (e), rhizomorphs (z),

rooted (r), missing (?)
12. stalk-surface-above-ring: fibrous (f), scaly (y), silky (k), smooth (s)
13. stalk-surface-below-ring: fibrous (f), scaly (y), silky (k), smooth (s)
14. stalk-color-above-ring: brown (n), buff (b), cinnamon (c), gray (g), orange

(o), pink (p), red (e), white (w), yellow (y)
15. stalk-color-below-ring: brown (n), buff (b), cinnamon (c), gray (g), orange

(o), pink (p), red (e), white (w), yellow (y)
16. veil-type: partial (p), universal (u)
17. veil-color: brown (n), orange (o), white (w), yellow (y)
18. ring-number: none (n), one (o), two (t)
19. ring-type: cobwebby (c), evanescent (e), flaring (f), large (l), none (n),

pendant (p), sheathing (s), zone (z)
20. spore-print-color: black (k), brown (n), buff (b), chocolate (h), green (r),

orange (o), purple (u), white (w), yellow (y)
21. population: abundant (a), clustered (c), numerous (n), scattered (s), sev-

eral (v), solitary (y)
22. habitat: grasses (g), leaves (l), meadows (m), paths (p), urban (u), waste

(w), woods (d)

Table 4.5 shows that when large overlaps among clusters of the same
class are permitted, the number of hidden units is decreased from 35 to 29 on
average, and the classification error rate remains.

Table 4.5. Same as Table 4.1, with the Mushroom data set.

Performance Mushroom
criteria Small Large

overlaps overlaps

Training error 0.8% 1.0%

Validation error 0.5% 0.7%

Testing error 1.1% 1.1%

Number of
hidden neurons 35 29



110 4 An Improved RBF Neural Network Classifier

4.5 RBF Neural Networks Dealing with Unbalanced
Data

4.5.1 Introduction

In neural network training, if some classes have much fewer samples compared
with the other classes, the neural network system may respond wrongly for
the minority classes because the overwhelming samples in the majority classes
dominate the adjustment procedure in training.

In [19], a cost-sensitive neural network was proposed, in which different
costs were associated with making errors in different classes. When the sum of
squared errors was calculated for the multi-player perceptron (MLP) neural
network, each term was multiplied by a class-dependent factor (cost). This
idea has a much earlier origin in machine learning, that is, the loss matrix
[22] which deals with different risks (costs) associated with making errors in
different classes. For example, in classification of medical images, these class-
dependent risk factors will need to be selected from practical experiences. By
assigning larger costs to minority classes, Berardi and Zhang [19] were able
to improve the classification accuracies for minority classes. In that work, as
in earlier discussions on risk matrices, cost factors are selected in an ad hoc
manner. In this work, we propose a method that determines these cost factors
automatically such that all classes, i.e., minority and majority classes, are
roughly equally important. We demonstrate this method in the case of the
RBF classifier.

In [201], two methods had been presented for handling unbalanced data
sets. In the first method, the samples of minority classes were duplicated to in-
crease their effects on training neural networks. In the second method, the so-
called snowball method proposed in [330] for multi-font character recognition
was used to improve the accuracy of the minority class [201]. In the snowball
method, neural networks were first trained with the samples in the minority
class, which favors the minority populations. Next, samples of majority classes
were added gradually while training the neural network dynamically. The two
methods were used in the MLP neural network, the ART (adaptive resonance
theory) neural network, and the RBF neural network. However, it was found
that the two methods mentioned above had no effect on the MLP and RBF
neural networks.

We explore a training method of RBF neural networks for handling
unbalanced data [103]. Constructing an RBF neural network with a compact
architecture but robust for unbalanced data is a challenging task.

In this section, we present an algorithm, first proposed in [103], which
deals with unbalanced data by increasing the contribution of minority samples
to the MSE (mean squared error) function. The MSE function is a powerful
objective function in neural network training. When learning a data set with
a minority class, the weights of a neural network will be dominated by the
majority classes. For example, when using the back-propagation method to
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train weights, the weights are updated according to the variation in the error
function of the neural network [201]. It is clear that the weights obtained
finally will reflect the nature of the majority classes but not much of the
minority class. Thus, it motivates us to increase the magnitudes of weighted
parameters of minority classes to balance the influence of the unbalanced
classes, i.e., the errors brought by different classes are weighted by parameters
inversely proportional to the number of samples in the classes.

4.5.2 The Standard RBF Neural Network Training Algorithm for
Unbalanced Data Sets

For a neural network classifier, its training algorithm is developed based on
its classification performance. The MSE function (Eq. (4.9)) is usually used
as the objective function in neural networks.

Here the MSE function of an RBF neural network is written as follows:

E0(W ) =
1
2

N∑
n=1

M∑
m=1

{yn
m − tnm}2. (4.16)

where W is the weight vector, N is the number of patterns, M is the number
of outputs, and K is the number of hidden units. wmj is the weight connecting
the jth hidden unit with the mth output unit. øn

j represents the output of the
jth kernel function for the nth input pattern. tnm represents the target output
of the mth output unit when inputting the nth pattern.

Assume that there are M classes in a data set and M output neurons
in the network. The mth output of an RBF neural network corresponding to
the nth input vector is as follows:

yn
m(Xn) =

K∑
j=1

wmjøj(Xn) + wm0bm. (4.17)

Here, Xn is the nth input pattern vector, m = 1, 2, ...,M , and K is the number
of hidden units. wmj is the weight connecting the jth hidden unit to the mth
output node. bm is the bias. wm0 is the weight connecting the bias and the
mth output node. øn

j (Xn) is the activation function of the jth hidden unit
corresponding to the nth input vector.

øn
j (Xn) = e

−||Xn−Cj||2
2σj

2
, (4.18)

where Cj and σj are the center and the width for the jth hidden unit re-
spectively, which are adjusted during learning. When calculating the distance
between input patterns and centers of hidden units, Euclidean distance mea-
sure is employed in RBF neural networks.

Substitute Eq. (4.17) into Eq. (4.16):
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E0(W ) =
1
2

N∑
n=1

M∑
m=1

{(
K∑

j=0

wmjøn
j + wm0bm) − tnm}2. (4.19)

Differentiate E0 with respect to wmj and let

∂E0(W )
∂wmj

= 0, (4.20)

then as shown in earlier section, Eq. (4.11) is obtained. Equation (4.11) is
written in a matrix notation (Eq. (4.12)), which leads to the pseudo-inverse
for solving weights.

4.5.3 Training RBF Neural Networks on Unbalanced Data Sets

It is shown in the above equations that there is no particular attention paid to
unbalanced cases, in which the sample sizes of different classes in a data set are
unbalanced. Unbalanced training data may lead to an unbalanced architecture
in training. In our work, we add larger weights on minority classes in order to
attract more attention in training for the minority members.

Assume that the number of samples in class i is Ni. The total number
of samples in the data set is N = N1 + · · ·+Ni + · · ·+NM . The error function
shown in Eq. (4.19) can be written as:

E0(W ) =
1
2

M∑
i=1

Ni∑
ni=1

M∑
m=1

{(
K∑

j=0

wmjøni
j + wm0bi) − tni

m }2. (4.21)

During the training of neural networks with unbalanced training data,
a general error function such as Eq. (4.16) or Eq. (4.21) cannot lead to a bal-
anced classification performance on all classes in the data set because majority
classes contribute more compared to minority classes and therefore result in
more weight adjustments on majority classes. In supervised training algo-
rithms, neural networks are constructed by minimizing a neural network error
function whose variables are the network weights connecting layers. Thus, the
training procedure has a bias towards frequently occurring classes.

In order to increase the contribution of minority classes in weight ad-
justments, we change Eq. (4.21) to:

E(W ) =
1
2

M∑
i=1

βi

Ni∑
ni=1

M∑
m=1

{(
K∑

j=0

wmjøni
j + wm0bi) − tni

m }2, (4.22)

where
βi =

N

Ni
, i = 1, 2, ..., M. (4.23)

Differentiate E with respect to wmj , and let
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∂E(W )
∂wmj

= 0. (4.24)

Substituting Eq. (4.22) into Eq. (4.24), we obtain:

M∑
i=1

βi

Ni∑
ni=1

{
K∑

j′=0

wmj′øni

j′ − tni
m }øni

j = 0. (4.25)

We introduce a new parameter rn replacing βi:

rn = βi when Xn ∈ Ai. (4.26)

Ai is class i. Substitute Eq. (4.26) into Eq. (4.25):

N∑
n=1

rn{
K∑

j′=0

wmj′øn
j′ − tnm}øn

j = 0. (4.27)

By replacing rn with
√

rn
√

rn, we obtain:

N∑
n=1

{
K∑

j′=0

wmj′øn
j′ .
√

rn − tnm
√

rn}øn
j

√
rn = 0. (4.28)

Similarly as stated in [22], there is the following new pseudo-inverse equation
for calculating weight W :

(φTφ)WTT = φTT. (4.29)

Different to the pseudo-inverse equation shown in Eq. (4.12), here φ → øn
j

√
rn,

and T → tni
√

rn.
As indicated in the above equations, we have taken the unbalanced data

into consideration when training RBF neural networks. The parameters rn in-
troduce biased weights which are opposite to the proportions of classes in a
data set. The effect of the weight parameters rn is shown in Sect. 4.5.4. Com-
pared with the training method without considering an unbalanced condition
in the data, the classification accuracy of the minority classes is improved.
We also allow large overlaps between clusters of the same class to reduce the
number of hidden units [102][104].

The modified training algorithm for RBF neural networks, in which
small overlaps between clusters of different classes and large overlaps between
clusters of the same class are allowed, is used in this section.

4.5.4 Experimental Results

The car evaluation data set in Chap. 3 are used here to demonstrate our
algorithm. The data set is divided into three parts, i.e., training, validation,
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and test sets. Each experiment is repeated five times with different initial
conditions and the average results are recorded.

We generate an unbalanced car data set based on function 5 shown
in Chap. 3. There are nine attributes and two classes: Class A and Class B.
Samples which do not meet the conditions of Class A are samples of Class
B in the car data set. 4000 patterns are in the training data set and 2000
patterns for the testing data set. There are 507 patterns of class 1 (Class A)
in the training data set, and 205 patterns of class 1 in the testing data set. The
testing data set is divided into two subsets: the validation set and the testing
set with 1000 patterns, respectively. Class A is the minority class. Class B is
the majority class.

Comparison between small overlaps and large overlaps among clusters
of the same class are shown on classification error rates and the number of
hidden units. When allowing large overlaps among clusters of the same class,
the number of hidden units is reduced from 328 to 303, and the classification
error rate on the test data set is increased slightly from 4.1% to 4.5%.

In table 4.6, the comparison of overall classification error rates between
with and without considering the unbalanced condition is shown. Here large
overlaps are allowed between clusters with the same class label. It is also shown
in Table 4.6, when considering the unbalanced condition in the data set, that
the classification error rate of the minority class decreases from 34.65% to
8.73%. At the same time, the error rate of the majority class increases slightly
from 1.37% to 4.1%. Since, in most cases, the minority class is embedded with
important information, improving the individual accuracy of the minority
class is critical.

In this section, a modification [103] is described to the training algo-
rithm for the construction and training of the RBF network on unbalanced
data by increasing bias towards the minority classes. Weights inversely propor-
tional to the number of patterns of classes are given to each class in the MSE
function. Experimental results show that the proposed method is effective in
improving the classification accuracy of minority classes while maintaining
the overall classification performance.

4.6 Summary

In this chapter, we described a modified training algorithm for RBF neural
networks, which we proposed earlier [107]. This modified algorithm leads to
fewer hidden units while maintaining the classification accuracy of RBF clas-
sifiers. Training is carried out without knowing in advance the number of
hidden units and without making any assumptions on the data.

We described two useful modifications to Roy et al.’s algorithm for the
construction and training of an RBF network, by allowing for large overlaps
among clusters of the same class and dynamically determining the cluster
overlaps of different classes.
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Table 4.6. Comparison of classification error rates of the RBF neural network for
each class of the car data set between with and without considering the unbalanced
condition when allowing large overlaps between clusters with the same class label
(average results of five independent runs). ( c© 2005 IEEE) We thank the IEEE for
allowing the reproduction of this table, first appeared in [103].

Without considering unbalanced condition

Overall error rates

Training set Validation set Testing set

1.89% 5.0% 4.8%

Class A

Training set Validation set Testing set

11.69% 27.69% 34.65%

Class B

Training set Validation set Testing set

0.77% 2.41% 1.37%

Considering unbalanced condition

Overall error rates

Training set Validation set Testing set

1.2% 5.1% 4.5%

Class A

Training set Validation set Testing set

4.27% 4.58% 8.73%

Class B

Training set Validation set Testing set

0.85% 5.15% 4.1%

In RBF neural network classifiers, larger overlaps between different
classes lead to higher classification errors. However, large overlaps between
clusters with the same class labels will not degrade classification performance
since the overlaps occur between clusters of the same class, i.e., the num-
ber of hidden units, is reduced and the classification error rate is reduced or
maintained by this modification.

The ratio between the number of patterns of a certain class (in-class
patterns) and the total number of patterns in the cluster represents the over-
laps of different classes. A dynamic parameter θ is applied to control the ratio
according to the training condition. If the trials for searching for a qualified
cluster reach a certain threshold, θ will be decreased for searching clusters.

The two modifications may help reduce detrimental effects from noisy
patterns and isolated patterns while maintaining classification performance.
There are two training stages in the training algorithm. By searching for
clusters based on the proposed modifications, widths, and centers of Gaussian
kernel functions are determined at the first training stage. Weights connecting
the hidden layer and the output layer are determined at the second training
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stage by the LLS method. Experimental results show that the modifications
are effective in reducing the number of hidden units while maintaining or even
increasing the classification accuracy.

This new approach can be feasibly used for classification when the
underlying distributions of the data are unknown. The accuracy is comparable
with Roy et al.’s method [264], but the computational time is greater than
Roy’s method. However, based on the experimental results, there seems to be
room for further research to speed up the training algorithm. In future work,
the present approach could be enhanced by analyzing the relationships among
the clusters for improving classification accuracies and reducing computational
time.

In addition, a new algorithm is presented for the construction and train-
ing of an RBF neural network with unbalanced data. In applications, minority
classes with much fewer samples are often present in data sets. The learning
process of a neural network is usually biased towards classes with majority
populations. Our study focused on improving the classification accuracy of
minority classes while maintaining the overall classification performance.



5

Attribute Importance Ranking for Data
Dimensionality Reduction

Large-scale data can only be handled with the aids of computers. However,
processing commands may need to be entered manually by data analysts and
data mining results can be fully used by decision makers only when the re-
sults can be understood explicitly. The removal of irrelevant or redundant
attributes could benefit us in making decisions and analyzing data efficiently.
Data miners are expected to present discovered knowledge in an easily under-
standable way. Data dimensionality reduction (DDR) is an essential part in
the data mining processes. Drawn from methods in pattern recognition and
statistics, DDR is developed to fulfill objectives such as improving accuracy
of prediction models, scaling the data mining models, reducing computational
cost, and providing a better understanding of knowledge extracted.

5.1 Introduction

DDR plays an important role in data mining tasks since those semi-automated
or automated methods perform better with lower-dimensional data with the
removal of irrelevant or redundant attributes compared to higher-dimensional
data. Irrelevant or redundant attributes as unuseful information often interfere
with useful ones. In the classification task, the main aim of DDR is to reduce
the number of attributes used in classification while maintaining an acceptable
classification accuracy.

The problem of DDR is to select a subset of attributes which represents
the concept of data without losing important information. Feature (attribute)
extraction and feature selection are two techniques of DDR. LDA (linear dis-
criminant analysis) [168][198] and PCA (principal component analysis) [166]
are common feature extraction methods. However, by the transformation op-
eration in feature extraction, new features which are linear or non-linear com-
binations of the original features are generated. Unwanted artifacts often come
out with the new features. In addition, non-linear transformation is usually not
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reversible, which brings difficulties in understanding data through extracted
features.

Feature selection does not generate unwanted artifacts, i.e., feature se-
lection is carried out in the original measurement space. This can be achieved
by removing redundant or irrelevant attributes without losing the original
concept of data.

In optimal feature selection, all possible feature combinations should
be inspected. Though some methods are explored to save some work [43], the
high computational cost is still a problem unsolved. Under the circumstance,
suboptimal feature selection algorithms are an alternative. Though subopti-
mal feature selection algorithms do not guarantee the optimal solution, the
selected feature subset usually leads to a higher performance in the induction
system (such as a classifier).

One wishes to find a measure that can determine the irrelevant at-
tributes with little computational cost. Consider two samples with different
class labels in a data set, which are presented by a set of attributes. There are
differences observed in the two samples’ attributes, i.e., there are correlations
between attributes and class labels. Irrelevant attributes will not reflect the
correlation relationship when changing from one sample to another sample,
and the correlations may be used to rank attribute importance.

On the other hand, large class distance is expected in order to dis-
tinguish different classes. Irrelevant attributes have no positive influence on
separating distinct classes, and the removal of redundant attributes has no
negative influence on forming distinct classes. Hence, class separability can be
used as a criterion to evaluate attribute importance.

Feature selection can be performed based on the evaluation of attribute
importance. Dash et al. [71] proposed an entropy measure to rank attribute
importance. In mutual information based feature selection (MIFS) [18][27],
‘the information content’ of each attribute (feature) is evaluated corresponding
to classes and the other attributes. However, the number of attributes included
in the selected attribute subset has to be predefined, which requires prior
knowledge of data. The importance level of attributes is evaluated by the
evaluation criterion. Kononenko [180] introduced a Relief-F method to rank
attribute importance in order to reduce data dimensionality. In the Relief-F
method, for a given instance, nearest neighbors are searched for from each
class. The difference in an attribute in each pair of instances is calculated.
The importance level of the attribute is evaluated by the probabilities of these
differences.

In this chapter, we describe a novel separability-correlation measure
(SCM), which was first proposed in [107] for determining the importance of
the original attributes. Then, different attribute subsets obtained based on
attribute ranking results are used as inputs to RBF classifiers. The classifi-
cation results are used to evaluate the feature subsets in order to reduce the
data dimensionality, and the RBF network architecture can be simplified with
the reduced attribute subsets. The SCM includes two parts, the intraclass dis-
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tance to interclass distance ratio and an attribute-class correlation measure.
The attribute-class correlation measure is used to evaluate the power of each
attribute affecting the class label for each pattern. The larger the correlation
factor, the more important the attribute is for determining the class labels
of patterns. The ratio of the intraclass distance and the interclass distance
reflects the class separability. The relative importance of a feature is given by
its relative magnitude of the SCM.

5.2 A Class-Separability Measure

The farther apart the classes are, the easier it is to classify them. Therefore,
to identify a subset of features that can maximize the separability between
classes is a desirable objective of feature selection.

For example, two classes C1 and C2 are shown in Fig. 5.1. The average
pairwise distance between patterns of the two classes reflects the separability
of the two classes, i.e., the greater the average pairwise distance, the better the
separability of the two classes [76]. When the number of patterns is large, the
cost of the pairwise-distance calculation is high. We used the average interclass
distance Sb =

∑C
i=1 Pi[(mi − m)(mi − m)T]

1
2 to replace the pairwise distance

(see Fig. 5.2) [76]. This can be easily introduced to multiple-class data. Here
C is the number of classes in the data set and Pi is the probability of the
ith class. Xik is the normalized data vector, whose jth attribute, Xik(j) is
normalized as:

Xik(j) =
Xik(j) − min(xj)

max(xj) − min(xj)
, (5.1)

where max(xj) and min(xj) are the maximum and the minimum of the jth
attribute in the data set, respectively. Equation (5.1) can normalize data to
the range [0, 1]. j = 1, 2, ..., n. n is the number of attributes. Xik(j) is the
original (un-normalized) data. mi is the mean vector of the ith class:

mi =

ni∑
k=1

Xik

ni
. (5.2)

m is the mean of all patterns in the data set:

m =

c∑
i=1

ni∑
k=1

Xik

n
, (5.3)

where ni is the number of patterns in the ith class. N is the total number of
patterns in the data set, i.e., N = n1 + n2 + · · · + nc.

The intraclass distance Sw represents distances of patterns within a
class. Sw =

∑C
i=1 Pi/ni

∑ni

k=1[(Xik−mi)(Xik−mi)T ]
1
2 may reflect the density

of data within a class. The denser the data within each class, the easier it is to
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C1 C2

Pairwise
distance

y

x

Fig. 5.1. Pairwise interclass relationship.

C1 C2

y

x

m1
m2

m

Fig. 5.2. Average interclass relationship.

classify. Thus, class-separability may be measured by the intraclass distance
Sw and the interclass distance (the distance between patterns of different
classes) Sb.

The greater Sb is and the smaller Sw is, the better the separability of
the data set is. Therefore, the ratio of Sw and Sb can be used to measure the
distinction of the classes: the smaller the ratio, the better the separability.

If removing attribute k1 from the data set leads to less class separability,
i.e., a greater Sw/Sb, compared to the case where attribute k2 is removed, one
may consider attribute k1 more important for classification of the data set
than attribute k2 is, and vice versa. Hence, we may rank the importance of
the attributes by calculating the intraclass-to-interclass distance ratio with
each attribute omitted in turn.
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However, the ratio Sw/Sb does not always work well as a class-
separability measure. For example, consider two classes, with one class sur-
rounding the other, but which are completely separable. Since m1, m2, and
m defined in Eq. (5.2) and Eq. (5.3) are equal, Sb → 0, which indicates total
inseparability. Here there is a need to have other importance measures.

5.3 An Attribute-Class Correlation Measure

In addition to the separability of classes in the data set, the correlation be-
tween the changes in attributes and their corresponding changes in class labels
should be taken into account when ranking the importance of attributes. This
correlation directly links features with class labels.

If the class labels of two patterns are different, the variations of at-
tributes in the two patterns are considered to be the affecting factor for the
variations of class labels and should be weighted positively. If the class labels
of two patterns are the same, the variations in the attributes are irrelevant
in deciding the classes and should be weighted negatively. The correlation
measure can be a useful factor when combined with the class-separability
measure.

We describe the following correlation [107] between the kth attribute
and the class labels in the data set:

Ck =
∑
i�=j

|Xik − Xjk|magn(yi − yj), (5.4)

where Xik and Xjk are the kth attributes of the ith pattern and the jth
pattern, respectively. yi and yj are the class labels of the ith pattern and the
jth pattern, respectively. For any y, magn(y) = 1 if |y| > 0 and magn(y) =
−0.05 if |y| = 0, which can help enlarge the differences of importance among
attributes, i.e., if the magnitude of an attribute changes from one data pattern
to another though the class label is unchanged, then a negative value should
apply to the attribute for evaluating it. A great magnitude of Ck shows that
there is a close correlation between class labels and the kth attribute, which
indicates the great importance of attribute k in classifying the patterns, and
vice versa.

5.4 The Separability-correlation Measure for Attribute
Importance Ranking

The following separability-correlation measure (SCM) [107] that we proposed
earlier is used to evaluate the importance levels of attributes by combining
the above two measures:

Rk = χSk + (1 − χ)Ck, (5.5)
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where Sk = Swk/Sbk, and Sk = (Sk − min(Sk))/(max(Sk) − min(Sk)) is the
normalization of Sk. max(Sk) and min(Sk) are the maximum and minimum
of all Sk, respectively. k = 1, 2, ..., n. n is the number of attributes. Swk and
Sbk are intraclass and interclass distances calculated with the kth attribute
omitted from each pattern, respectively. For example, the ith pattern Xi =
{xi1, xi2, ...xik, xik+1, ..., xin} becomes X′

i={xi1, xi2, ..., xik−1, xik+1, ..., xin}
when Rk is calculated. Ck = (Ck − min(Ck))/(max(Ck) − min(Ck)) is the
normalization of Ck. χ is a weight parameter; 1 ≥ χ ≥ 0 and χ is determined
empirically: the best choice of χ should lead to a subset of attributes which
results in the highest classification accuracy.

The importance levels of attributes are ranked using the values of Rk.
The greater the magnitude of Rk, the more important the kth attribute. We
will demonstrate the use of our SCM method in Sect. 5.7.

We use a combination of two measures, i.e., class separability and
attribute-class correlation, because either of them alone does not work well,
as shown in our experimental results presented later in the book.

5.5 Different Searches for Ranking Attributes

Bottom-up, Top-down, and Exhaustive searches can be used for ranking at-
tributes. In a bottom-up search, we begin from an empty set. The SCM is
used for evaluating each attribute by omitting this attribute from each pat-
tern, i.e., the attribute is considered to be more important if its corresponding
SCM magnitude is larger than others. The selected attribute is included in
the empty attribute subset. This operation is continued until n attributes
are included. The order of attributes entering the attribute set indicates the
importance order of attributes. In a bottom-up search, the number of at-
tribute combinations in a SCM calculation for determining attribute impor-
tance equals n (n is the number of attributes).

It starts from the complete attribute set in a top-down search. Each
attribute is removed from the attribute set temporarily for calculating its
SCM. Then the least important attribute, whose corresponding value in SCM
is the smallest, is eliminated from the current attribute set. The steps are
iterated until only one attribute is left in the attribute set. The number of
attribute combinations in the SCM calculation is n + (n − 1) + · · · + 1 =
n(n + 1)/2. In Sect. 5.7, the differences of the two searches will be shown.

Thus, more attribute combinations are considered in the top-down
search than in the bottom-up search, which may lead to different feature selec-
tion results since some combinations may not be inspected in the bottom-up
search.

All the possible attribute subsets are examined in an exhaustive search.
The number of attribute combinations needed to be checked is C1

n + C2
n + · ·

·Cn−1
n +Cn

n = 2n−1. In the branch and bound algorithm, some attribute sets
need not be examined, which leads to a saving in computation; however, the
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number of calculations still grows exponentially with n. In addition, the com-
putational saving is achieved by assuming that the feature selection evaluation
function is monotonic [76].

Due to the computational burden of optimal search methods, one has
to resort to suboptimal feature selection methods. In classification tasks, since
the goal is to obtain better classification accuracy with less complicated con-
struction of classifiers, the strategy of using the classification accuracy as
evaluation for selecting features is used widely. Suboptimal search is used and
RBF classifiers are used as evaluators.

5.6 Data Dimensionality Reduction

Based on whether or not the feature selection is carried out independently of
induction algorithms, DDR can be categorized into the filter approach [187]
and the wrapper approach [158][246]. The weakness of the filter approach
lies in that the selected feature subset may not lead to high performance
in induction systems, such as the classification system. And, the wrapper
approach combines DDR with induction algorithms, but high computational
cost is a heavy burden.

Classification of patterns may be based on a very few of the most im-
portant attributes. Determining which attributes should be retained for the
original concept of data is pivotal in feature selection techniques. The basic
idea to select a subset of attributes from measure space is to inspect all the
possible subsets. The best subset is selected on the basis that its value is great-
est for a criterion function which represents the concept of data. This idea is
theoretically satisfactory, but the computation burden is heavy in practice. It
motivates people to rank the importance level of each attribute first and then
choose the attribute subset according to the order of attributes. For example,
for a six-dimensional data set, in order to obtain a best subset of attributes,
in the basic feature selection method one needs to calculate 26 = 64 times.
But by ranking the importance level first, we only need six calculations to
determine the selected subset.

In feature selection, we try to avoid selecting too many or too few
features than necessary. If insufficient features are selected, the information
content to keep the concept of the data is degraded. If too many features are
selected, including redundant or irrelevant features, the classification accura-
cies may be lower due to the interference of irrelevant information. In data
mining applications, the removal of irrelevant features is significant for discov-
ering hidden relationships between features, and between features and class
targets of patterns.

Unsuitable reduction of data dimensionality results in loss of informa-
tion and may degrade the quality of data mining tasks, such as the classifi-
cation task. In classification, the evaluator of DDR is usually the classifier.
The RBF neural network classifier can be used as an evaluator for selecting
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features. Our algorithm is based on the fact that the removal of irrelevant or
redundant attributes from the attribute set may not change the original con-
cept of data, but the removal of important attributes will change the original
concept of data.

Assume that the data space has L dimensions. The aim of the DDR
task is to select the best subset X ′ with l (l < L) dimensions (X ′ = {x′

i | i =
1, 2, ..., l, x′

i ∈ X}) from the original attribute set X (X = {xi | i = 1, 2, ..., L}).
The best feature subset is composed of l features which optimize a criterion
function, A(·), i.e., the selected feature subset X ′ satisfies [76]:

A(X ′) = max
Y

A(Y ), (5.6)

where Y refers to any other feature combination, Y = {yi | i = 1, 2, ..., G, G =
1, 2, ..., L − 1, yi ∈ X}. L is the original dimensionality of data.

The criterion function A(·) usually has with the following characteris-
tics [76]:

1. A(·) ≥ 0
2. A(·) has its maximum value when the data classes in X ′ space are disjoint.
3. For feature xi ∈ X, there are the following inequalities:

A(x′
1) ≥ A(x′

2) ≥ · · · ≥ A(x′
l) ≥ · · · ≥ A(x′

L), (5.7)

where the original feature set X = {x′
i | ∀i ≤ L}.

In a classification task, if there are infinite samples provided to classi-
fiers, the detrimental effect of irrelevant or redundant features on the classi-
fication performance can be ignored. However, in practical applications, the
number of samples is finite. Under this circumstance, the error brought in
cannot be negligible. DDR is usually used to facilitate the classification task
and improve the performance of classification.

5.6.1 Simplifying the RBF Classifier Through Data
Dimensionality Reduction

Both the data dimensionality and the distribution of the input patterns affect
the number of hidden units in RBF neural networks. If the data dimensionality
is reduced, the number of hidden units will also be decreased in many cases.
We use an RBF classifier together with the SCM to select the best subsets of
attributes.

Based on the attribute importance ranking, we describe how to reduce
the structural complexity and improve the performance of the RBF network
as follows. According to the rank of attribute importance level obtained by
the algorithm described in this chapter, J most important attributes are used
as inputs of the RBF neural network classifier for J = 1, 2, ..., N − 1, N .
The classification error rateis calculated for each J . Thus, N classification
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error rates are calculated corresponding to N subsets of selected attributes.
For small J , the classification error rate decreases as J increases until all
relevant attributes are included. As J increases further, the classification error
rate may remain unchanged or even increase because redundant or irrelevant
attributes are included. The best subset of attributes is the one with the
smallest classification error rate.

5.7 Experimental Results

5.7.1 Attribute Ranking Results

The Iris, Monk3, Thyroid, Breast cancer, Ionosphere, and Mushroom data
sets from the UCI Repository of Machine Learning Databases [223] are used to
demonstrate our algorithms for ranking attribute importance and constructing
a simplified RBF network.

The Ionosphere data set is radar data which were collected in Goose
Bay, Labrador. This system consists of a phased array of 16 high-frequency
antennas with a total transmitted power on the order of 6.4 KW. There are
34 attributes and two classes in the Ionosphere data set.

For Iris, Monk3, Thyroid, and Breast cancer data sets, attribute im-
portance rankings using the SCM with different χ’s (Eq. (5.5)) are shown in
Table 5.1, which shows that χ affects the order of attribute importance rank-
ing because different χ’s change the weights of the class-separability measure
and the attribute-class correlation measure. Five χ’s are used, i.e., χ = 0.0,
0.4, 0.5, 0.7, and 1.0. In order to determine which order is better, different
subsets of attributes are inputs to the RBF classifier for each order, so as to
find the best subset for that order. If there are n original attributes in the
data set, there are n candidate subsets of attributes as discussed in Sect. 5.5.
The classification results are used to evaluate the attribute subsets. We select
the subset of attributes corresponding to the lowest classification error rate
for each data set and each ranking order.

According to the experimental results, when χ = 0.4, the importance
ranking results for the first four data sets lead to the lowest or nearly the
lowest validation error rates with the smallest attribute subsets.

For the first four data sets, the comparison between importance-ranking
results obtained by our SCM using bottom-up and top-down searches when
χ = 0.4, SUD [71], and Relief-F [180] is shown in Table 5.28.

For the Mushroom data set, attribute ranking queues with different χ’s
are shown in Table 5.17. χ = 0 corresponds to the lowest classification error
rate in the validation set with the smallest attribute set for the Mushroom
data set. The comparison between importance ranking results obtained by our
SCM using bottom-up and top-down searches when χ = 0, SUD, and Relief-F
is shown in Table 5.18 for the Mushroom data set.
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For the Ionosphere data set, attribute ranking queues are shown in
Table 5.21. χ = 0.5 corresponds to the lowest classification error rate in the
validation data set with the smallest attribute set for Ionosphere.

Table 5.1. Attribute importance ranking using the SCM with different χ’s ob-
tained by bottom-up search. ( c© 2005 IEEE) We thank the IEEE for allowing the
reproduction of this table, first appeared in [107].

χ Iris Monk3 Thyroid Breast

χ = 0.0 4,3,1,2 5,4,2,1,6,3 2,3,5,1,4 7,2,4,3,8,9,5,6,1

χ = 0.4 4,3,1,2 5,2,4,1,6,3 2,3,5,4,1 2,7,3,4,9,5,8,6,1

χ = 0.5 4,1,3,2 5,2,4,1,6,3 2,3,5,4,1 2,7,3,4,9,5,1,8,6

χ = 0.7 1,4,2,3 5,2,4,1,6,3 2,5,3,4,1 2,7,1,3,4,9,5,8,6

χ = 1.0 1,2,4,3 5,2,3,6,4,1 2,5,3,4,1 1,2,7,3,4,9,5,8,6

In the following subsections, the classification results are shown for
each data set with different feature subsets as inputs of classifiers based on
attribute ranking results.

5.7.2 Iris Data Set

In Tables 5.2 to 5.5, classification error rates are shown for all attribute sub-
sets corresponding to different attribute importance ranking results based on
different χ’s. χ = 0.4 is selected since it leads to the smallest attribute subset
{3, 4} with the nearly lowest classification error rate.

Table 5.2. Classification error rates for Iris data set with different subsets of at-
tributes according to the importance ranking shown in Table 5.1 when χ = 0.0 and
χ = 0.4. The attribute subset with the lowest validation error is highlighted in bold.
( c© 2005 IEEE) We thank the IEEE for allowing the reproduction of this table, first
appeared in [107].

Attributes used Error rate
Training set Validation set Test set

4 0.1222 0.0667 0.1333

4,3 0.0333 0.0000 0.0333

4,3,1 0.0556 0.0333 0.1000

4,3,1,2 0.0889 0.1000 0.1000



5.7 Experimental Results 127

Table 5.3. Same as Table 5.2, when χ = 0.5. ( c© 2005 IEEE) We thank the IEEE
for allowing the reproduction of this table, first appeared in [107].

Attributes Error rate
used Training set Validation set Test set

1 0.3333 0.2333 0.4333

1,4 0.0778 0.0000 0.1000

1,4,2 0.0556 0 0.0333

1,4,2,3 0.0556 0 0.0333

Table 5.4. Same as Table 5.2, when χ = 0.7. ( c© 2005 IEEE) We thank the IEEE
for allowing the reproduction of this table, first appeared in [107].

Attributes Error rate
used Training set Validation set Test set

4 0.3333 0.3667 0.4667

4,1 0.1111 0.2000 0.1000

4,1,3 0.3333 0.2333 0.4333

4,1,3,2 0.0778 0.1000 0.0333

Table 5.5. Same as Table 5.2, when χ = 1.0. ( c© 2005 IEEE) We thank the IEEE
for allowing the reproduction of this table, first appeared in [107].

Attributes Error rate
used Training set Validation set Test set

1 0.4556 0.5667 0.3667

1,2 0.1889 0.3333 0.2333

1,2,4 0.0778 0.0667 0.1667

1,2,4,3 0.0444 0.0667 0.0333

5.7.3 Monk3 Data Set

In Tables 5.6 to 5.8, classification error rates are shown for all attribute sub-
sets corresponding to different attribute importance ranking results based on
different χ’s. χ = 0.4 is selected since it leads to the smallest attribute subset
{2, 4, 5} with the lowest classification error rates.

5.7.4 Thyroid Data Set

In Tables 5.9 and 5.10, classification error rates for all attribute subsets corre-
sponding to different attribute importance ranking results based on different
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Table 5.6. Classification error rates for Monk3 data set with different subsets of
attributes according to the importance ranking shown in Table 5.1 when χ = 0.0.
The attribute subset with the lowest validation error is highlighted in bold. ( c© 2005
IEEE) We thank the IEEE for allowing the reproduction of this table, first appeared
in [107].

Attributes Error rate
used Training set Validation set Test set

5 0.2705 0.2328 0.2100

5,4 0.2541 0.3060 0.2450

5,4,2 0.0902 0.0991 0.0650

5,4,2,1 0.1967 0.2371 0.2050

5,4,2,1,6 0.1148 0.0948 0.1000

5,4,2,1,6,3 0.1885 0.2112 0.2600

Table 5.7. Same as Table 5.6, when χ = 0.4, χ = 0.5, and χ = 0.7. ( c© 2005 IEEE)
We thank the IEEE for allowing the reproduction of this table, first appeared in
[107].

Attributes used Error rate
Training set Validation set Test set

5 0.1880 0.3000 0.2870

5,2 0.1780 0.2830 0.2690

5,2,4 0.0242 0.0585 0.067

5,2,4,1 0.0899 0.3360 0.1830

5,2,4,1,6 0.0498 0.1897 0.1320

5,2,4,1,6,3 0.0328 0.2030 0.1240

χ’s are shown. χ = 0.4 is selected since it leads to the smallest attribute subset
{2, 3, 5} with the lowest classification error rates.

5.7.5 Breast Cancer Data Set

For 5 χ’s, there are five different attribute importance ranking results. In
Tables 5.11 to 5.15, classification error rates for all attribute subsets corre-
sponding to different attribute importance ranking results based on different
χ’s are shown. χ = 0.4 is selected since it leads to the smallest attribute subset
{2, 3, 7} with the lowest classification error rates.

5.7.6 Mushroom Data Set

Corresponding to five χ’s, we obtain five different attribute importance rank-
ing results for the Mushroom data set. In Table 5.19, the experimental results
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Table 5.8. Same as Table 5.6, when χ = 1.0. ( c© 2005 IEEE) We thank the IEEE
for allowing the reproduction of this table, first appeared in [107].

Attributes Error rate
used Training set Validation set Test set

5 0.2705 0.2328 0.2100

5,2 0.2213 0.1853 0.2050

5,2,3 0.1967 0.1638 0.1400

5,2,3,6 0.1066 0.0690 0.0700

5,2,3,6,4 0.2131 0.1767 0.1700

5,2,3,6,4,1 0.1230 0.1552 0.1600

Table 5.9. Classification error rates for the Thyroid data set with different subsets
of attributes according to the importance ranking shown in Table 5.1 when χ = 0.0.
The attribute subset with the lowest validation error is highlighted in bold. ( c© 2005
IEEE) We thank the IEEE for allowing the reproduction of this table, first appeared
in [107].

Attributes Error rate
used Training set Validation set Test set

2 0.1860 0.1628 0.2093

2,3 0.0698 0.0698 0.2093

2,3,5 0.0543 0.0465 0.0930

2,3,5,1 0.0543 0.0465 0.1163

2,3,5,1,4 0.0388 0.0465 0.1395

Table 5.10. Same as Table 5.9, when χ = 0.4, χ = 0.5, χ = 0.7, and χ = 1.0. ( c©
2005 IEEE) We thank the IEEE for allowing the reproduction of this table, first
appeared in [107].

Attributes used Error rate
Training set Validation set Test set

2 0.0930 0.0930 0.0930

2,3 0.0698 0.0465 0.0698

2,3,5 0.0543 0.0233 0.0233

2,3,5,4 0.0543 0.0233 0.0465

2,3,5,4,1 0.0388 0.0233 0.0233

with and without removal of irrelevant attributes are compared for the Mush-
room data set. χ = 0.0 is selected since it leads to the smallest attribute subset
{9, 20, 5} with the lowest classification error rates shown in Table 5.20.



130 5 Attribute Importance Ranking for Data Dimensionality Reduction

Table 5.11. Classification error rates for the Breast cancer data set with different
subsets of attributes according to the importance ranking shown in Table 5.1 when
χ = 0.0. The attribute subset with the lowest validation error is highlighted in bold.
( c© 2005 IEEE) We thank the IEEE for allowing the reproduction of this table, first
appeared in [107].

Attributes Error rate
used Training set Validation set Test set

7 0.1100 0.0803 0.1022

7,2 0.0954 0.0803 0.0949

7,2,4 0.0391 0.0511 0.0219

7,2,4,3 0.0318 0.0438 0.0073

7,2,4,3,8 0.0367 0.0365 0.0219

7,2,4,3,8,9 0.0244 0.0365 0.0146

7,2,4,3,8,9,5 0.0318 0.0438 0.0146

7,2,4,3,8,9,5,6 0.0342 0.0365 0.0146

7,2,4,3,8,9,5,6,1 0.0342 0.0511 0.0219

Table 5.12. Same as Table 5.11, when χ = 0.4. ( c© 2005 IEEE) We thank the IEEE
for allowing the reproduction of this table, first appeared in [107].

Attributes used Error rate
Training set Validation set Test set

2 0.1100 0.0803 0.1022

2,7 0.0709 0.0657 0.0876

2,7,3 0.0269 0.0365 0.0073

2,7,3,4 0.0391 0.0438 0.0365

2,7,3,4,9 0.0269 0.0365 0.0219

2,7,3,4,9,5 0.0342 0.0365 0.0146

2,7,3,4,9,5,8 0.0293 0.0438 0.0073

2,7,3,4,9,5,8,6 0.0269 0.0438 0.0146

2,7,3,4,9,5,8,6,1 0.0342 0.0365 0.0146

5.7.7 Ionosphere Data Set

There are 34 attributes for each data pattern of the Ionosphere data set. The
total number of patterns is 351. 60% of the data points are used for training,
20% for validation, and 20% for testing. The comparison on the number of
hidden units and classification error rates before and after removing irrelevant
attributes is shown in Table 5.23. 21 attributes out of the original attribute set
are selected corresponding to χ = 0.5 as shown in Table 5.26. The error rate of
the testing data set is decreased, and the number of hidden units is reduced
as well. According to the ranking queue of attributes (seen in Table 5.22)
obtained by the SUD method, the first 22 attributes in the attribute queue
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Table 5.13. Same as Table 5.11, when χ = 0.5. ( c© 2005 IEEE) We thank the IEEE
for allowing the reproduction of this table, first appeared in [107].

Attributes Error rate
used Training set Validation set Test set

2 0.1443 0.1314 0.1387

2,7 0.0513 0.0511 0.0365

2,7,3 0.0269 0.0292 0.0073

2,7,3,4 0.0318 0.0511 0.0146

2,7,3,4,9 0.0293 0.0438 0.0219

2,7,3,4,9,5 0.0269 0.0365 0.0292

2,7,3,4,9,5,1 0.0244 0.0438 0.0073

2,7,3,4,9,5,1,8 0.0318 0.0365 0.0146

2,7,3,4,9,5,1,8,6 0.0318 0.0365 0.0146

Table 5.14. Same as Table 5.11, when χ = 0.7. ( c© 2005 IEEE) We thank the IEEE
for allowing the reproduction of this table, first appeared in [107].

Attributes Error rate
used Training set Validation set Test set

2 0.1443 0.1314 0.1387

2,7 0.0538 0.0584 0.0438

2,7,1 0.0685 0.0876 0.0730

2,7,1,3 0.0342 0.0365 0.0146

2,7,1,3,4 0.0367 0.0365 0.0219

2,7,1,3,4,9 0.0269 0.0438 0.0292

2,7,1,3,4,9,5 0.0318 0.0511 0.0146

2,7,1,3,4,9,5,8 0.0293 0.0365 0.0292

2,7,1,3,4,9,5,8,6 0.0391 0.0511 0.0292

are selected, which corresponds to the least classification error rate shown in
Table 5.24. In Table 5.25, the results are shown corresponding to the attribute
ranking queue of the Relief-F method. The feature subset with 21 attributes
obtained based on our SCM leads to the classification error rate of 5.57%.
The feature subset with 22 attributes obtained based on the SUD method
leads to the classification error rate of 6.86%. And, the feature subset with 21
attributes obtained based on the Relief-F method leads to the classification
error rate of 5.43%. The sizes of the feature subsets from the three attribute
ranking methods are approximately equal to one another. The results derived
from the Relief-F method correspond to a lower classification error rate.
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Table 5.15. Same as Table 5.11, when χ = 1.0. ( c© 2005 IEEE) We thank the IEEE
for allowing the reproduction of this table, first appeared in [107].

Attributes Error rate
used Training set Validation set Test set

1 0.3423 0.3869 0.3358

1,2 0.1467 0.1314 0.1460

1,2,7 0.0660 0.0730 0.0511

1,2,7,3 0.0489 0.0292 0.0146

1,2,7,3,4 0.0416 0.0365 0.0146

1,2,7,3,4,9 0.0367 0.0438 0.0292

1,2,7,3,4,9,5 0.0269 0.0365 0.0146

1,2,7,3,4,9,5,8 0.0318 0.0365 0.0219

1,2,7,3,4,9,5,8,6 0.0318 0.0365 0.0292

Table 5.16. Comparison of the numbers of hidden units and classification errors
before and after irrelevant attributes are removed according to the SCM ranking
method. B: before removal, A: after removal. ( c© 2005 IEEE) We thank the IEEE
for allowing the reproduction of this table, first appeared in [107].

Comparison Data set
Iris Monk3 Thyroid Breast

B 1,2,3,4 1,2,3,4,5,6 1,2,3,4,5 1,2,3,4,5,6,7,8,9
Input attributes A 4,3 5,2,4 2,3,5 2,7,3

B 4 19.6 8 11
Number of hidden units A 3 11.6 5 5

B 0.0467 0.0688 0.0465 0.0146
Classification error rate A 0.0333 0.067 0.0233 0.0073

Table 5.17. Attribute importance ranking for the Mushroom data set using the
SCM with different χ’s obtained by bottom-up search.

χ Mushroom

χ = 0.0 9, 20, 5, 3, 22, 1, 13, 14, 15, 11, 21, 12, 19, 2, 4, 8, 10, 7, 18, 17, 6, 16

χ = 0.4 9, 20, 1, 5, 2, 13, 14, 11, 3, 22, 12, 15, 19, 21, 4, 8, 10, 7, 18, 17, 6, 16

χ = 0.5 1, 20, 9, 2, 5, 13, 14, 11, 12, 19, 3, 22, 15, 21, 4, 8, 10, 7, 18, 17, 6, 16

χ = 0.7 1, 20, 2, 9, 5, 13, 12, 19, 11, 14, 15, 22, 4, 3, 8, 21, 10, 7, 18, 17, 6, 16

χ = 1.0 1, 2, 20, 13, 5, 9, 12, 19, 11, 4, 8, 14, 10, 7, 18, 6, 17, 16, 15, 22, 21, 3

5.7.8 Comparisons Between Top-down and Bottom-up Searches
and with Other Methods

We compare results obtained from the SCM using bottom-up and top-down
searches. We also compare with results derived from the attribute importance
ranking by the Relief-F [180] and the SUD [71].



5.7 Experimental Results 133

Table 5.18. Comparison for the Mushroom data set between importance ranking
results obtained by our SCM using bottom-up and top-down searches when χ = 0.0,
the SUD, and the Relief-F methods.

Data set Decreasing order of importance
SCM (bottom-up) SCM (top-down) SUD Relief-F

Mushroom 9,20,5,3,22,1, 9,20,5,3,22,1, 9,3,20,22,5,11, 5,20,11,8,19,4,
13,14,15,11,21, 13,14,15,11,21 21,2,19,15,14 10,22,9,12,13,
12,19,2,4,8,10, 12,19,2,4,8,10, 1,13,12,4,10,8, 21,7,3,2,15,14,
7,18,17,6,16 7,18,17,6,16 7,18,6,17,16 18,6,17,16,1

Table 5.19. Comparison of the numbers of hidden units and classification errors
before and after irrelevant attributes are removed according to the SCM ranking
method for the Mushroom data set. B: before removal, A: after removal.

Comparison Data set
Mushroom

B A

Input attributes 1,2,3,4,5,6,7,8,9,10,11,12, 5,9,20
13,14,15,16,17,18,19,20,21,22

Number of hidden units 29 18

Classification error rate 1.1% 1.2%

Figure 5.3(a) shows the classification error rates of the RBF classifier
for different subsets of Iris attributes according to the importance ranking
obtained with the SCM using bottom-up search when χ = 0.4. We obtained
the same attribute ranking results and hence the same attribute subsets from
the SCM using bottom-up and top-down searches (Table 5.28) for Iris. It is
seen from Figs. 5.3(a) and (b) that as the number of attributes used increases,
the test error first decreases, reaches a minimum when the first two attributes
in the attribute ranking queue are used, and then increases. Hence, in the Iris
data set, attributes 3 and 4 are relevant attributes for classification and are
then selected, which improves the classification performance and decreases the
number of inputs and the number of hidden units of the RBF neural network.
The classification error rate is reduced from 0.0467 to 0.0333, and the number
of Gaussian hidden units is reduced from 4 to 3 (Table 5.16 summarizes results
for different data sets).

Further, we carry out classification by inputting different attribute sets
to the RBF classifiers based on the attribute importance ranking results ob-
tained by the SUD [71] and the Relief-F [180] methods (reproduced in Table
5.28). We compare the classification error rates of test data sets corresponding
to the selected attribute subsets obtained using the SCM, SUD, and Relief-F
methods (Table 5.27).
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Table 5.20. Classification error rates for the Mushroom data set with different
subsets of attributes according to the importance ranking shown in Table 5.1 when
χ = 0.0. The attribute subset with the lowest validation error is highlighted in bold.

Attributes Error rate
used Training Validation Test

set set set

9 0.027 0.044 0.030

9,20 0.035 0.047 0.022

9,20,5 0.01 0.02 0.012

9,20,5,3 0.083 0.042 0.060

9,20,5,3,22 0.041 0.081 0.035

9,20,5,3,22,1 0.092 0.080 0.071

9,20,5,3,22,1,13 0.079 0.082 0.078

9,20,5,3,22,1,13,14 0.068 0.097 0.068

9,20,5,3,22,1,13,14,15 0.0640 0.061 0.050

9,20,5,3,22,1,13,14,15,11 0.039 0.052 0.062

9,20,5,3,22,1,13,14,15,11,21 0.072 0.081 0.090

9,20,5,3,22,1,13,14,15,11,21,12 0.044 0.031 0.044

9,20,5,3,22,1,13,14,15,11,21,12,19 0.0490 0.053 0.034

9,20,5,3,22,1,13,14,15,11,21,12,19,2 0.039 0.035 0.045

9,20,5,3,22,1,13,14,15,11,21,12,19,2,4 0.025 0.036 0.024

9,20,5,3,22,1,13,14,15,11,21,12,19,2,4,8 0.023 0.046 0.020

9,20,5,3,22,1,13,14,15,11,21,12,19,2,4,8,10 0.033 0.025 0.024

9,20,5,3,22,1,13,14,15,11,21,12,19,2,4,8,10,7 0.023 0.038 0.032

9,20,5,3,22,1,13,14,15,11,21,12,19,2,4,8,10,7,18 0.022 0.029 0.048

9,20,5,3,22,1,13,14,15,11,21,12,19,2,4,8,10,7,18,17 0.039 0.039 0.035

9,20,5,3,22,1,13,14,15,11,21,12,19,2,4,8,10,7,18,17,6 0.039 0.0520 0.024

9,20,5,3,22,1,13,14,15,11,21,12,19,2,4,8,10,7,18,17,6,16 0.039 0.0520 0.024

In Figs. 5.3 (c) and (d), we show that attributes 3 and 4 lead to the
lowest error rates (Table 5.27) in both SUD and Relief-F methods. Hence, the
selected attribute subset for the Iris data set is {3, 4} according to SUD and
Relief-F, which is the same as the result based on our SCM method.

We obtained the same attribute ranking results and hence the same
attribute subsets using our SCM with both bottom-up and top-down searches
for the Monk3 data set (Table 5.28). Figs. 5.4(a) and (b) show that attributes
2, 4, and 5 should be selected for the Monk3 data set, which decreases the
classification error rate from 0.0688 to 0.067, the number of inputs from 6 to
3, and the number of Gaussian hidden units from 19 to 11 (Table 5.16). In
Figs. 5.4 (c) and (d), attributes 2, 4, and 5 should be selected according to
both SUD and Relief-F methods, which is the same as the attribute subset
obtained based on our SCM method.
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Table 5.21. Attribute importance ranking for the Ionosphere data set using the
SCM with different χ’s obtained by bottom-up search.

χ Ionosphere

15 21 23 13 31 19 29 28 5 17 25 7 3 11 24 33 8
χ = 0.0 20 32 22 26 9 14 18 30 12 27 10 4 6 16 34 1 2

5 3 7 15 31 21 29 23 13 25 19 33 17 9 28 11 8
χ = 0.4 14 24 20 22 12 32 18 26 30 27 10 6 4 16 34 2 1

5 3 7 31 15 21 29 23 13 25 33 9 19 17 11 8 28
χ = 0.5 14 12 24 22 20 18 32 27 26 10 6 30 4 16 2 34 1

5 3 2 7 31 15 29 21 23 13 33 25 19 11 17 8 14
χ = 0.7 12 28 27 18 6 22 10 16 24 20 32 4 26 30 34 1

2 5 3 7 31 9 29 33 21 15 23 13 25 11 8 14 19 12
χ = 1.0 17 27 6 16 10 4 18 22 34 32 20 30 26 24 28 1

Table 5.22. Comparison for the Ionosphere data set between importance ranking
results obtained by our SCM using bottom-up search when χ = 0.5, the SUD and
Relief-F methods.

Data set Decreasing order of importance
SCM (bottom-up) SUD Relief-F

Ionosphere 5,3,7,31,15,21,29, 13,15,11,9,7,17,19, 34,22,33,6,4,8,
23,13,25,33,9,19, 21,5,3,23,25,27, 16,14,21,9,27,15,
17,11,8,28,14,12, 29,31,33,10,4,6, 30,20,29,24,32,7,
24,22,20,18,32,27, 12,14,8,16,20,18, 12,18,10,11,3,5,28,
26,10,6,30,4,16 22,28,26,24,30, 25,26,19,23,1,31,
,2,34,1 32,34,2,1 13,17,2

Table 5.23. Comparison of the numbers of hidden units and classification errors
before and after irrelevant attributes are removed according to the SCM ranking
method for the Ionosphere data set. B: before removal, A: after removal.

Comparison Data set
Ionosphere

B A

Input attributes 34 attributes first 21 attributes in the attribute queue

Number of hidden units 24 23

Classification error rate 7.13% 5.57%

For the Thyroid data set, the attribute ranking queue corresponding to
our SCM with bottom-up search is {2, 3, 5, 4, 1} and is {2, 5, 3, 4, 1} with top-
down search. Fig. 5.5 (a) and (b) show that, in both bottom-up and top-down
searches, attributes 2, 3, and 5 are considered to be relevant for classification
and are selected, which decreases the classification error rate from 0.0465 to
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Table 5.24. Comparison of the numbers of hidden units and classification errors
before and after irrelevant attributes are removed according to the SUD ranking
method for the Ionosphere data set. B: before removal, A: after removal.

Comparison Data set
Ionosphere

B A

Input attributes 34 attributes first 22 attributes in the attribute queue

Number of hidden units 24 22

Classification error rate 7.13% 6.86%

Table 5.25. Comparison of the numbers of hidden units and classification errors
before and after irrelevant attributes are removed according to the Relief-F ranking
method for the Ionosphere data set. B: before removal, A: after removal.

Comparison Data set
Ionosphere

B A

Input attributes 34 attributes first 21 attributes in the attribute queue

Number of hidden units 24 20

Classification error rate 7.13% 5.43%

Table 5.26. Classification error rates for the Ionosphere data set with different
subsets of attributes according to the importance ranking shown in Table 5.21 when
χ = 0.5. The attribute subset with the lowest validation error is highlighted in bold.

Number of Error rate
attributes used Training Validation Test

set set set

1 0.1706 0.1571 0.1571

5 0.1280 0.1286 0.10

10 0.1090 0.0715 0.10

15 0.0853 0.0715 0.1143

20 0.0853 0.0470 0.0857

21 0.0711 0.0429 0.0571

25 0.0711 0.0715 0.0571

30 0.0834 0.0571 0.0857

34 0.6350 0.857 0.0713

0.0233, the number of inputs from 5 to 3, and the number of Gaussian hidden
units from 8 to 5 (Table 5.16). It is shown in Fig. 5.5(c) that attributes 4,
5, 3, and 2 are selected based on the ranking result of the Relief-F method.
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Fig. 5.5(d) shows that attributes 4, 3, 1, and 2 should be selected according
to SUD. The classification error rates of the test data set when the respective
selected attribute subsets are used as inputs for RBF classifiers are 0.0233,
0.093, and 0.1163 for our SCM method, SUD, and Relief-F, respectively (Table
5.27). Hence, the attribute subset based on our SCM method is smaller with
higher accuracy compared to the SUD and Relief-F methods.

For the Breast cancer data set, the attribute ranking queue corre-
sponding to our SCM with bottom-up search is {2, 7, 3, 4, 9, 5, 1, 8, 6} and is
{7, 2, 3, 4, 9, 5, 8, 6, 1} with top-down search. It is shown in Figs. 5.6(a)-(b)
that, in both bottom-up and top-down searches, attributes 2, 3, and 7 are
considered to be important for classification and are then selected, which de-
creases the classification error rate from 0.0146 to 0.0073, the number of inputs
from 9 to 3, and the number of hidden units of the RBF neural network from
11 to 5 (Table 5.16). Fig. 5.6(c) shows that the attribute subset including
the first five attributes (attributes 6, 2, 3, 7, and 5) in the Relief-F attribute
ranking queue leads to the lowest classification error rates. According to the
classification results shown in Fig. 5.6(d) based on the ranking result of the
SUD method, attributes 1, 7, 3, 2, and 5 should be selected because the subset
leads to the lowest error rates. The classification error rates of the test data
set when the selected attribute subsets are used as inputs for RBF classifiers
are 0.0073, 0.0146, and 0.0073 for our SCM, SUD, and Relief-F, respectively
(Table 5.27). Hence, the attribute subset based on our SCM method is the
smallest with the highest classification accuracy.

For the Mushroom data set, the attribute ranking queues correspond-
ing to our SCM with bottom-up search and top-down searches are the
same: {9, 20, 5, 3, 22, 1, 13, 14, 15, 11, 21, 12, 19, 2, 4, 8, 10, 7, 18, 17, 6, 16}. In the
Mushroom data set, the 16th attribute has the same value for all samples. It
is clear that it is an irrelevant attribute and it will not play any role in classi-
fication. It is shown in Table 5.18 that our method and the SUD method rank
this attribute as the least important attribute. It is shown in Figs. 5.7(a)-(b)
that, in both bottom-up and top-down searches, attributes 9, 20, and 5 are
considered to be important for classification and are then selected, the num-
ber of inputs reduces from 22 to 3, and the number of hidden units of the
RBF neural network reduces from 29 to 18 (Table 5.19). Fig. 5.7(c) shows
that the attribute subset including the first two attributes (attributes 5 and
20) in the Relief-F attribute ranking queue leads to the lowest classification
error rates. According to the classification results shown in Fig. 5.7(d) based
on the ranking result of the SUD method, attributes 9, 3, 20, 22, and 5 should
be selected because the subset leads to the lowest error rates.

5.8 Summary

In this chapter, a novel separability-correlation measure (SCM) is described
to rank the importance of attributes. SCM is composed of two measures:
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Fig. 5.3. Classification error rates of the Iris data set for different numbers of
attributes used according to attribute ranking results obtained from (a) SCM with
bottom-up search, (b) SCM with top-down search, (c) Relief-F, and (d) SUD. Solid
line: the training data set; dotted line: the validation data set; dashed line: the test
data set. ( c© 2005 IEEE) We thank the IEEE for allowing the reproduction of this
figure, first appeared in [107].

the class-separability measure and the attribute-class correlation measure.
Though the class-separability measure, i.e., the ratio of the interclass dis-
tance and the intraclass distance, delivers information for the discriminatory
capability of attributes, this measure does not always work well alone. The
correlation between attributes and class labels is calculated as another mea-
sure for the discriminatory ability of attributes, which measures the influence
of the change of attributes on the change of class labels for patterns. We use
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Fig. 5.4. Same as Fig. 5.3, Monk3 data set. ( c© 2005 IEEE) We thank the IEEE
for allowing the reproduction of this figure, first appeared in [107].

a weighting parameter that leads to the highest classification accuracy. At-
tribute importance ranking results from SUD [71] and Relief-F [180] methods
are shown.

In this chapter, data dimensionality reduction is also carried out in
order to improve classification performance and to reduce the number of at-
tributes as well as the complexity of the RBF neural network.

According to the ranking results obtained by the SCM method, different
attribute subsets are used as inputs to RBF classifiers. The attribute subsets
with the lowest classification error rates and the least numbers of attributes are
selected. With bottom-up and top-down searches, the same selected attribute
subsets are eventually obtained in the five benchmark data sets tested.
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Table 5.27. Comparison between classification error rates of the testing data sets
with the best attribute subsets obtained by our SCM, SUD, and Relief-F methods.

Data set classification error rates
SCM SUD Relief-F

Iris 0.0333 0.0333 0.0333

Monk3 0.067 0.067 0.09

Thyroid 0.0233 0.093 0.1163

Breast 0.0073 0.0146 0.0073

Mushroom 0.012 0.02 0.008

Ionosphere 0.0279 0.031 0.047

The ranking operation is independent of induction algorithms. The
ranking is not linked with the training of the RBF classifier, which reduces
the computational cost. By ranking attribute importance, fewer candidate
attribute subsets need to be inspected. Thus, our method combines the ad-
vantages of the filter approach and the wrapper approach.

Compared to existing attribute importance ranking methods, such as
SUD [71] and Relief-F [180] methods, the SCM leads to smaller attribute
subsets and higher classification accuracies in simulations when class labels
are available. We have also employed a useful modification [107] described in
Chap. 4 for the construction and training of the RBF network by allowing
for large overlaps among clusters of the same class, which further reduces the
number of hidden units while maintaining the classification accuracy. Exper-
imental results show that the methods described here are effective in reduc-
ing the attribute size, the structural complexity of the RBF neural network,
and the classification error rates. Though it is a suboptimal feature selection
method, high performance is obtained.

Table 5.28. Comparison between importance ranking results obtained by our SCM
using bottom-up and top-down searches when χ = 0.4, the SUD and Relief-F meth-
ods. ( c© 2005 IEEE) We thank the IEEE for allowing the reproduction of this table,
first appeared in [107].

Data set Decreasing order of importance
SCM (bottom-up) SCM (top-down) SUD Relief-F

Iris 4,3,1,2 4,3,1,2 3,4,1,2 4,3,1,2

Monk3 5,2,4,1,6,3 5,2,4,1,6,3 5,2,4,1,6,3 2,5,4,3,6,1

Thyroid 2,3,5,4,1 2,5,3,4,1 4,5,3,2,1 4,3,1,2,5

Breast 2,7,3,4,9,5,1,8,6 7,2,3,4,9,5,8,6,1 1,7,3,2,5,6,4,8,9 6,2,3,7,5,1,4,8,9
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Fig. 5.5. Same as Fig. 5.3, the Thyroid data set. ( c© 2005 IEEE) We thank the
IEEE for allowing the reproduction of this figure, first appeared in [107].
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Fig. 5.6. Same as Fig. 5.3, the Breast cancer data set (note that the scale for
classification error rates in (d) is different from those in (a)-(c)). ( c© 2005 IEEE) We
thank the IEEE for allowing the reproduction of this figure, first appeared in [107].
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Fig. 5.7. Same as Fig. 5.3, the Mushroom data set. ( c© 2005 IEEE) We thank the
IEEE for allowing the reproduction of this figure, first appeared in [107].
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Genetic Algorithms for Class-Dependent
Feature Selection

6.1 Introduction

Removal of redundant or irrelevant attributes from data sets can facilitate
practical applications in improving speed and relieving memory constraints.
Data dimensionality reduction (DDR) can reduce the computation burden
in semi-automated or automated processes, for example when constructing a
radial basis function (RBF) neural network to classify data.

Many algorithms have been developed for DDR. DDR can be cate-
gorized from different aspects. As stated in previous chapters, DDR can be
classified into feature selection and feature extraction based on the origins of
resultant features. According to the relationship of DDR methods with induc-
tion systems, DDR techniques can be categorized as the filter approach and
the wrapper approach. There is another way to categorize DDR techniques,
i.e., class-independent feature selection, in which features selected are common
to all classes, and class-dependent feature selection, in which different feature
sets are selected for different classes.

In class-independent feature selection [18][27][166][199][207][209], all
features selected are assumed to play equal roles in discriminating each class
from the others, which hides the possibility that different groups of features
may have different capabilities in discriminating classes.

Some class-independent feature selection techniques were proposed
based on genetic algorithms (GAs) [32][44][112][185][254], which are popular
searching algorithms. In GA feature selection techniques, each chromosome in
the population pool represents a feature mask [32][44][185][254]. Assume that
there are n original features in a data set. n bits are needed in a chromosome to
represent the n features. The kth bit of a chromosome indicates the presence
or absence of the kth feature. Usually, the feature is present if the bit is 1, and
is absent if the bit is 0. The classification accuracy of a classifier is used as the
fitness function in GAs. Fung et al. [112] proposed to use fuzzy GAs (FGAs)
to select class-independent features. Instead of selecting or rejecting a feature
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completely, Fung et al. introduced in-between cases for determining the im-
portance of a feature, i.e., the fitness of a feature is between 0 and 1 according
to its importance in FGAs. In the feature selection based on FGAs, features
are considered generally to all classes. In [32][112], the fitness evaluator was a
nearest-neighbor classifier. Chaikla and Qi [44] also chose the nearest-neighbor
classifier together with multiple correlation as the fitness function of GAs to
select class-independent features. Raymer et al. [254] encoded the number of
nearest-neighbor classifiers into a chromosome together with the features. The
classification accuracy was also used as the evaluation function. In [185], the
classification result was determined by the vote of several different classifiers,
i.e., the logistic classifier (LOG), the linear discriminant classifier (LDC), and
the quadratic discriminant classifier (QDC), etc.

Consider a feature vector X, X = {xj | j = 1, 2, ..., L}, where xj repre-
sents the jth feature. In a classification task, a training sample Xi = {xij | j =
1, 2, ..., L} is given with its class label yi. Class-dependent feature selection is
to select the best subset Zk = {Zkj | k = 1, 2, ..., M, j = 1, 2, ..., lk, Zkj ∈ X}
with lk ≤ L for each class k. M is the number of classes in a data set. Class-
dependent feature selection techniques are developed based on the fact that a
feature may have a different power in discriminating classes, and thus a subset
of features may be selected to discriminate one class from other classes.

In [232][233], Oh et al. proposed a class-dependent feature selection
method to improve pattern recognition performance. Based on their obser-
vation, class-dependent features played important roles in class separation.
Multiple MLP classifiers [232][233] were constructed with inputs of the class-
dependent features. M MLP classifiers were trained corresponding to a data
set with M classes, which led to high cost in computation. A feature subset
for the ith class is evaluated by class separation Scc. The separation between
class wi and class wj was defined by Oh et al. as:

Scc(wi, wj ,X) =
∫

RL

|Pwi
n (X) − Pwj

n (X)|dx, (6.1)

where RL is a L-dimensional real space. Pwi
n (X) and P

wj
n (X) are estimated

distributions for class wi and class wj , respectively. To select the feature subset
for class p, all the other classes are combined and treated as the other class q.
Each attribute xk (0 < k ≤ L) is evaluated by class separation Scc(wp, wq, xk)
and put in a ranking queue according to the magnitude of its corresponding
Scc. The larger Scc(wp, wq, xk) is, the more important the attribute xk is con-
sidered to be. Then the L attribute subsets, where the jth attribute subset gj

comprises the first j most important attributes in the ranking queue, are eval-
uated with Scc(wp, wq, gk) to obtain the best class-dependent feature subset
with the largest Scc for each class.

Bailey [14] defined class-dependent features as features whose discrim-
ination ability varies significantly depending on the classes which are to be
discriminated. Strong and weak class-dependence are defined when discussing
class-dependent features [14]:
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• Weak class-dependence: the feature has an observable value for each class.
The feature and the class variable are conditionally independent given a
set of classes.

• Strong class-dependence: when conditioned on the class variable, the fea-
ture may not have an observable value.

Strong or weak class-dependence could be considered in some particular
domain, such as speech signals. Some measurements for speaking or writing
manners are usually conditioned on the individual person (a class label in the
data), which may not be observable on another person.

Besides class-dependent feature selection, class-specific feature extrac-
tion is also used in the literature to generate features. Baggenstoss [11][12]
presented a new approach to deliver feature subsets separately for each class
of data. Class-specific features are transformed from the original data space
in order to transform original high dimensionality into a much lower dimen-
sionality. This approach facilitated the construction of classifiers based on the
joint probability density function (PDF) of class-specific features which are
transformed from original features. In a probabilistic classifier, it is very com-
plex to calculate the PDF when the feature dimensionality exceeds five. The
class-specific method [13] is composed of two steps. First, original features
are transformed into a low-dimensional feature space, and then the PDF is
estimated in the new feature space. Second, the feature PDFs are projected
back to the PDFs in the original space.

In Kay’s work [169], a sufficient statistic for each class is considered sep-
arately. Class-specific features are generated for facilitating the estimation of
the probability density function (PDF) when constructing optimal classifiers.

In [234], a non-linear class-dependent feature transformation is de-
scribed. The transformation of features is done by minimizing an estimate
of the relative entropy between actual conditional likelihood and its approx-
imation. The new feature vector is calculated using the current symplectic
transformation parameters in each iteration, and the maximum likelihood
estimates of the HMM (Hidden Markov Model) parameters are calculated
subsequently. After the HMM and symplectic parameters have converged lo-
cally, the class-dependent feature subsets are transformed by the symplectic
map. The maximum likelihood estimates of symplectic map parameters are
obtained by the conjugate gradient algorithm. It is noted that the acoustic
features generated for a certain class by the above class-dependent feature
method may not be observable for other classes.

In this chapter, we describe a method that we proposed earlier [104]
for selecting class-dependent features and constructing a novel RBF classifier
based on class-dependent features. For different groups of hidden units corre-
sponding to different classes in RBF neural networks, different feature subsets
are selected as inputs. GAs are used to search for the optimal feature masks
for all classes. In contrast to Oh et al. [232][233], only a single such RBF net-
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work, rather than multiple MLPs, is required for a multi-class problem when
selecting class-dependent features.

6.2 The Conventional RBF Classifier

In conventional RBF neural networks, all attributes are used as inputs.
And no weights need to be tuned between the input layer and the hidden layer,
i.e., default weights are 1’s. The activation of a hidden unit is determined by
the distance between the input vector and the center vector of the hidden
unit. A hidden unit is a cluster, which is active only for a subset of patterns.
As stated in Chap. 4, most patterns in the subset have the same class label
as the initial center of the hidden unit. In our RBF neural network training
algorithm, the initial centers are randomly selected from the training set. The
weights connecting hidden units and output units will show the relationship
between hidden units and classes. Let us consider a weight matrix W :

W =

⎛
⎜⎜⎝

w11 w12 · · · w1M

w21 w22 · · · w2M

. . . . . . . . . . . . . . . . . .
wm1 wm2 · · · wmM

⎞
⎟⎟⎠ , (6.2)

where wik (i = 1, ..., m, k = 1, ..., M) is the weight which connects hidden
neuron i with output neuron k. m is the number of hidden neurons and M is
the number of class labels, which is the same as the number of output neurons
in the RBF neural network.

For example, the corresponding matrix of the Thyroid data set is:

W =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.91 −0.08 −0.15
0 1.74 −0.380
0.97 −0.18 −0.2
−0.10 −0.04 1.61
−0.14 0.87 −0.05
−0.09 0.93 −0.10

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Here six hidden units are constructed for three classes. As shown in W , the
first and the third hidden units mainly serve the first output neuron (class
1), since only w11 and w31 are significant in row 1 and row 3, respectively.
Similarly, the second, the fifth, and the sixth hidden units mainly serve class
2, and the fourth hidden unit mainly serves class 3.

The hidden units serving a class are not generated sequentially during
training. But, we can group them to show that every class corresponds to a
subset of hidden units as in Fig. 6.1.

Thus, class-dependent features can be selected through RBF neural
networks, i.e., a subset of features for a certain class are the inputs to only
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Fig. 6.1. Architecture of a conventional RBF neural network.

the hidden units which mainly serve the class. A novel RBF classifier is con-
structed based on this idea. We will show it in the next section.

6.3 Constructing an RBF with Class-Dependent Features

For a classifier, classification accuracy or the capability for separating
classes is a main evaluation criterion of its performance. The best feature
subsets for each class can be obtained by evaluating every combination of
feature subsets together with the resultant classification accuracy. However,
in practice, it is too computationally expensive to implement. We employ GAs
for searching for optimal class-dependent feature subsets.

6.3.1 Architecture of a Novel RBF Classifier

It is observed that the hidden neurons in an RBF network may be grouped
according to classes. That is, if most of the patterns in the cluster represented
by a hidden neuron belong to class i, we say that this hidden neuron belongs
to the group for class i (Fig. 6.2). We add a class-dependent feature mask
for each group of hidden neurons. {xi

1, x
i
2, ..., x

i
ki
} (ki is the number of class-

dependent features for class i) are the features selected for discriminating class
i from other classes.

The mth output of the network is as follows:
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ym(X) =
M∑
i=1

ki∑
j=1

wi
mjø

i
j(X) + wm0bm, (6.3)

where M is the number of classes and ki is the number of hidden units serving
the ith class. wi

mj is the weight connecting the jth hidden unit of the mth
class to the ith output unit. bm is the bias and wm0 is the weight connecting
the bias and the mth output node. øi

j(X) is the activation function of the jth
hidden unit which serves class i:

øi
j(X) = e

−||Xi−Ci
j
||2

2σi
j
2

. (6.4)

Here Xi = {gi
1x1, g

i
2x2, ..., g

i
kxk, ..., gi

nxn}. {gi
1, g

i
2, ..., g

i
k, ..., gi

n} is the feature
mask for class i. gi

k ∈ {0, 1}. σi
j is the width for the jth hidden unit of

class i and is obtained during training in the presence of the feature masks.
Ci

j = {gi
1c1, g

i
2c2, ..., g

i
kck, ..., gi

ncn}.

Input
Output

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

The hidden unit
group for class 1

The hidden unit
group for class M

.

....

The feature
subset for class 1

..

The feature subset
for class M

.

.

.

1

1x

1

1kx

M

kM
x

Mx1

. . .

.

.

.

. .

.

1y

My

Fig. 6.2. Architecture of a new RBF neural network with class-dependent feature
masks. ( c© 2005 IEEE) We thank the IEEE for allowing the reproduction of this
figure, first appeared in [104].
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6.4 Encoding Feature Masks Using GAs

A GA exhibits powerful efficiency in solving many complex problems.
It can search for optimal solutions based on its fitness evaluation and offspring
generation strategies. Usually, a binary string (an individual in the population
pool) is used to represent a solution for a problem. Each individual is evaluated
by the defined fitness function. The operators of a GA, such as selection,
crossover, and mutation, are used for producing offspring. Parents with higher
fitness score are given high probabilities to generate offspring.

GAs have been used widely in the literature [32][44][112][185][254].
Here, we use GAs for determining class-dependent feature masks. Suppose
that n is the total number of the original features and M is the number of
classes. A binary string representing a possible solution in a GA is shown
in Fig. 6.3. The length of each individual is nM bits. A chromosome G is
represented as follows:

G = {(g1
1 , ..., g1

i , ..., g1
n), ..., (gk

1 , ..., gk
i , ..., gk

n), ..., (gM
1 , ..., gM

i , ..., gM
n )}. (6.5)

Here gk
i ∈ {0, 1}, k = 1, 2, ..., M , and i = 1, 2, ..., n.

1 0100 0011 1001

feature mask

for class 1

feature mask

for class M

1 2 3 4 n 1 2 3 4 n
1 0 0

features 1,3,...,n-1 are used
for discriminating class 1
from the other classes

features 1,2,...,n-3,n are used
for discriminating class M
from the other classes

..........
..........

.......... ..........
..........

1g
Mg

..........

Fig. 6.3. An encoding string presenting an exemplary solution. ( c© 2005 IEEE) We
thank the IEEE for allowing the reproduction of this figure, first appeared in [106].
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6.4.1 Crossover and Mutation

We use the roulette wheel selection to select chromosomes in each gener-
ation. In the roulette wheel selection, the selection probability is proportional
to each chromosome’s fitness. Two-point crossover is used. Two points are
randomly located in each of the two parents. The two parts of the parent
chromosomes between the two pairs of points are then exchanged to generate
new offspring. The probability of crossover is chosen to be around 80% in this
book.

Mutation can prevent fixation at some particular loci. A locus in the
parent chromosome is selected randomly and the bit at the position is replaced,
i.e., if the original bit is 0, it is replaced by 1, and vice versa. Usually, the
mutation rate is relatively small to avoid too much variation. However, at
later generations, the number of identical members increases, which leads to a
stagnant state. In order to break stagnant states to search for optimal results,
we use a dynamic mutation rate, i.e., if the number of identical members in a
population exceeds a certain percentage, the mutation rate is increased by a
certain amount.

6.4.2 Fitness Function

For our purpose here, we choose the following fitness function:

F (G) = 1 − Ev(G), (6.6)

where Ev(G) is the classification error rate of the validation data set for
chromosome G.

6.5 Experimental Results

The Glass, Thyroid, and Wine data sets from the UCI Repository of
Machine Learning Databases [223] are used to demonstrate our algorithm.

The GA parameters are chosen as follows. In the population pool, there
are nM (M is the number of classes, and n is the number of features) chromo-
somes. The initial mutation rate is 40%. If the number of identical members
or the number of members with the same fitness value in a population exceeds
25%, the mutation rate is increased by 1%. The number of elite chromosomes,
which remain unchanged and live from one generation to the next, is two. The
generation number is 50. In GAs, chromosomes in an initial pool are generated
randomly. The parameters are not sensitive to the data sets. We determine
the parameters empirically according to [8][44][351] etc.
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6.5.1 Glass Data Set

The collection of the Glass data set was for the study of different types
of glass, which was motivated by criminological investigations. At the scene of
a crime, the glass left can be used as evidence if it is correctly identified The
Glass data set contains 214 cases. There are nine attributes and six classes in
the Glass data set. 114 patterns are for training, 50 for validation, and 50 for
testing.

The attributes are RI (refractive index), Na (sodium), Mg (magne-
sium), Al (aluminum), Si (silicon), K (potassium), Ca (calcium), Ba (barium),
and Fe (iron). The six classes of the Glass data set are building-windows-
float-processed, building-windows-non-float-processed, vehicle-windows-float-
processed, containers, tableware, and headlamps.

The error rates in our experiments are 16.41% for the training set,
20.93% for the validation set, and 23.26% for the test set. For class 1, four
features are involved for discriminating it from other classes, i.e., features
{3, 4, 6, 8} obtained by the GA are used as the inputs to the hidden units of
class 1 (Table 6.1). The feature subset {1, 2, 3, 4, 5, 7, 9} is used as the input
to the hidden units of class 2. The feature subset {1, 2, 5, 6, 8} is used to
discriminate class 3 from other classes. For class 4, the corresponding feature
subset is {2, 3, , 5, 7}. The feature subset {4, 5, 6, 8, 9} is the input for class
5, and the feature subset {1, 2, 4} is the input for class 6. Thus, the average
number of features used for each class is 4.7 compared to the original nine
features.

Table 6.1. The feature mask found by GAs for the Glass data set. ( c© 2005 IEEE)
We thank the IEEE for allowing the reproduction of this table, first appeared in
[104].

Classes Feature masks

Class 1 0 0 1 1 0 1 0 1 0

Class 2 1 1 1 1 1 0 1 0 1

Class 3 1 1 0 0 1 1 0 1 0

Class 4 0 1 1 0 1 0 1 0 0

Class 5 0 0 0 1 1 1 0 1 1

Class 6 1 1 0 1 0 0 0 0 0

Our experimental result is compared with other methods’ results [185]
in Table 6.2. In the first line of Table 6.2, the classification result of the LOG
classifier [82][185] using all the features (no feature selection) is shown. By se-
quential backward selection (SBS) [76][185], 6.9 class-independent features on
average are obtained for all classes. The LOG classification result [185] based
on selecting class-independent features using GAs is shown in the third line of
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Table 6.2. Accuracy comparison with other methods for the Glass data set. ( c©
2005 IEEE) We thank the IEEE for allowing the reproduction of this table, first
appeared in [104].

Method Training error Testing error Number of features

LOG without
feature selection 28.14% 39.54% 9

SBS 27.62% 37.39% 6.9

LOG with
class-independent 27.52% 40.39% 7.7
feature selection

Multiple classifiers
Version 1 27.62% 39.26% Unknown

Multiple classifiers
Version 2 25.35% 34.55% Unknown

Our method 16.41% 23.26% 4.7

Table 6.2. There are two versions of another algorithm involving multiple clas-
sifiers [185], i.e., the logistic classifier (LOG), the linear discriminant classifier
(LDC), and the quadratic discriminant classifier (QDC), etc. In multiple clas-
sifiers (version 1) [185], a GA was used for class-independent feature selection
and only features were encoded in the GA. The fitness of each chromosome
was determined by a vote of the classifiers. In multiple classifiers (version 2),
the classifier types were also encoded in the GA, i.e., each individual classifier
can be chosen from the three classifiers mentioned above. The comparison
shows that a better classification accuracy is obtained with a fewer number
of features by our method.

6.5.2 Thyroid Data Set

The detailed information about the Thyroid data set is shown in Chap.
4. 115 patterns of the Thyroid data set are used for training, 50 are for vali-
dation, and 50 are for testing.

With class-dependent features, the classification error rates are 2.84%
for the training set, 2.33% for the validation set, and 4.65% for the test set.
Without feature masks, the classification error rates are 3.88% for the training
set, 3.88% for the validation set, and 4.65% for the test set.

It is shown in the feature masks (Table 6.3) that feature 1 does not play
any important role in discriminating the classes. For class 3, feature 2 is used
to discriminate it from other classes. Features 2 and 3 are used to discriminate
class 2 from other classes. Features {2, 3, 4, 5} are used for discriminate class
1 from other classes. The average number of features used for each class is
2.33, compared to the original five features.
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Table 6.3. The feature mask found by GAs for the Thyroid data set. ( c© 2005
IEEE) We thank the IEEE for allowing the reproduction of this table, first appeared
in [104].

Classes Feature masks

Class 1 0 1 1 1 1

Class 2 0 1 1 0 0

Class 3 0 1 0 0 0

6.5.3 Wine Data Set

The Wine data set was obtained from chemical analysis of wines pro-
duced in the same region of Italy but derived from three different cultivars.
There are 13 attributes and 178 patterns in the Wine data set. 106 patterns
are for training, 36 for validation, and 36 for testing. There are three classes
corresponding to the three different cultivars.

With class-dependent features, the classification error rates are 2.83%
for the training set, 0% for the validation set, and 2.78% for the test set.
Without feature masks, the classification error rates are 3.77% for the training
set, 2.78% for the validation set, and 2.78% for the test set.

It is shown in the feature masks (Table 6.4) that features 1 and 8 do not
play any important role in discriminating the classes. For class 1, the feature
subset {2, 4, 5, 6, 7, 9, 11, 12} can discriminate it from other classes. Features 3,
4, 5, 6, 7, 10, 11, 12, and 13 are used to discriminate class 2 from other classes.
The feature subset {3, 4, 11, 12, 13} is used to discriminate class 3 from other
classes. The average number of features used for each class is seven, compared
to the original 13 features.

Table 6.4. The feature mask found by GAs for the Wine data set.

Classes Feature masks

Class 1 0 1 0 1 1 1 1 0 1 0 1 1 0

Class 2 0 0 1 1 1 1 1 0 0 1 1 1 1

Class 3 0 0 1 1 0 0 0 0 0 0 1 1 1

6.6 Summary

In this chapter, we have selected class-dependent features for each class and
described a novel RBF classifier with class-dependent features which are se-
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lected by GAs based on RBF classification performance. The feature subset
is selected for each class individually based on its ability in discriminating the
class from other classes, which brings out the relationship between the fea-
ture subset and the class concerned. The Glass, Thyroid, and Wine data sets
are used to demonstrate the algorithm. Experimental results show that the
algorithm is effective in reducing the number of feature inputs and improving
classification accuracies simultaneously.

DDR is often the first step for data mining tasks. The class-dependent
feature selection results obtained above provide new information for analyzing
the relationship between features and classes. The reduction in dimensionality
can lead to compact rules in the rule extraction task. Extracting rules based
on the classification results obtained above will be shown in a latter chapter.
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Rule Extraction from RBF Neural Networks

In this chapter, we first review rule extraction techniques. Next, a type of data
mining systems, i.e., the rule extraction system, is discussed from the view-
point of its components. Then, four decompositional rule extraction methods
based on RBF neural networks are described. The first rule extraction method
extracts rules from trained RBF neural networks through a GA: the GA is
used to determine the rule premises [100]. The second extracts rules from
trained RBF neural networks by a gradient descent method[101][333]. In the
third rule extraction method, we extract rules based on the result of data
dimensionality reduction using the gradient descent method [102]. The fourth
rule extraction method utilizes the results of class-dependent feature selection
to extract rules [106].

7.1 Introduction

A major problem in data mining using neural networks is that knowledge hid-
den in a trained neural network is not comprehensible to humans. Linguistic
rule extraction [28][102] [269][287][317][324] aims at solving this problem.

Rule extraction can facilitate data mining in many aspects:

• Increase perceptibility and help human beings better understand decisions
of learning models. This advantage of rule extraction is extremely helpful
in medical diagnosis.

• Refine initial domain knowledge. Irrelevant or redundant attributes tend
to be absent in extracted rules. In future data collections, labor cost can
be reduced by skipping redundant or irrelevant attributes.

• Explain data concepts by linguistic rules to clients.
• Find active attributes in decision making. Many attributes may play roles

in decision making. However, some attributes may be more active com-
pared to others. Learning models usually are opaque in identifying active
attributes. Rule extraction provides a solution in this problem.
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In the literature, extracted rules are mainly evaluated based on two
criteria [115][146]:

• rule accuracy,
• rule complexity.

An additional criterion is ‘the fidelity’ [286]. ‘The fidelity’ is defined
as the ratio between correctly classified outputs from rule extraction and
correctly classified outputs from the corresponding classifier. ‘The fidelity’
reflects how well a rule extraction method matches its corresponding classifier.

The objective of rule extraction is to obtain a comprehensible descrip-
tion of the data, rather than a description of the network structure in most
cases. Based on this, we conclude that the fidelity measurement is not al-
ways necessary for evaluating rule extraction, especially when models based
on which rules are extracted do not have high learning accuracy. High fi-
delity under this condition does not correspond to high performance in rules
extracted, but to high mapping accuracy from rules extracted to learning
models. In some cases, the accuracy of the extracted rules might be higher
than the accuracy of the learning models, i.e., high consistency between a data
concept and rules extracted is obtained rather than high consistency between
rules extracted and learning models. Zhou [362] had questioned whether rule
extraction is implemented using neural networks or for neural networks, i.e.,
to compensate for neural network ‘black-box’ behavior. And, Zhou [362] also
concluded that rule extraction using neural networks and rule extraction for
neural networks are two different tasks, and different criteria should be used
for evaluating rule extraction techniques for the two tasks.

Given a data set, learning models from artificial intelligence and ma-
chine learning are employed to abstract essences of the data by training the
models on a set of training patterns. Rule extraction is considered as a proce-
dure to discover hidden information from data sets and represent it in explicit
rules, which are relatively easy to understand, and potentially provoke new
ideas in further data analysis.

For a data set with tens or hundreds of attributes and thousands of
data patterns, it is hard to identify the roles of the attributes in classifying
new patterns without any aid from learning models. Neural networks can be
trained on these training samples to abstract essences and store the learned
essential knowledge as parameters in the network. However, though essential
knowledge has been captured and embedded in the trained neural network,
humans cannot tell exactly why a new pattern is classified to a class, which is
sometimes referred to as ‘black-box’ characteristics of neural networks. In the
medical domain, a disjunctive explanation given as ‘If medical measurement
A is a1, and medical measurement B is b1,..., then conclusion.’ is preferable
to a complex mathematical decision function hidden in neural networks.

Rule extraction from neural networks has been an active research topic
in recent years. In early rule extraction work, Gallant [116] used trained neural
networks to develop an expert-system engine and interpret the knowledge
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embedded in neural network models by IF–THEN rules. More than a decade
passed. The capability of rule extraction [1][139][288][301] had been shown for
delivering comprehensible descriptions of data concepts from complex machine
learning models.

Rule extraction techniques are usually based on machine learning meth-
ods such as neural networks, genetic algorithms, statistical methods, rough
sets, decision trees, and fuzzy logic.

Many methods [9][70][81][218][309] have been proposed for rule extrac-
tion from neural networks. These rule extraction methods can be characterized
by:

1. forms of allowed variables: continuous, discrete, or both continuous and
discrete variables
Data may have discrete, continuous, or mixed attributes. There are a
few methods dealing with discrete variables [269][287][317] and continuous
variables [284][305]. And, some methods deal with both continuous and
discrete variables [28][102].

2. forms of extracted rule decision boundaries: hyper-rectangular, hyper-
plane, hyper-ellipse, and fuzzy boundaries (Fig. 7.1).
Crisp rule extraction methods extract rules with hyper-plane decision
boundaries [111][145] or hyper-rectangular [28][154][200] decision bound-
aries . Rules with hyper-ellipse decision boundaries can be obtained from
RBF-based rule extraction methods directly; however, the complexity of
extracted rules makes this type of rule unpopular. For some applications,
fuzzy rules are preferred over crisp rules in cases when approximate rea-
soning is desirable rather than exact reasoning. A detailed survey of fuzzy
rule extraction based on neural networks can be found in [218].

3. approaches for searching rules: pedagogical, decompositional, and eclectic
approaches [269].
The pedagogical algorithms consider a learning model (such as a neural
network model) as a black box and use only the activation value of input
and output units in the model when extracting rules from the trained
model. In contrast, the decompositional algorithms consider each unit
in a learning model and unify them into the rules corresponding to the
model. Compared with the former algorithms, the latter ones can utilize
each single unit of trained models, and can obtain detailed rules [273]. The
eclectic approach [9] is a combination of the above two categories (Fig.
7.2).

4. Learning models constructed before extracting rules: classification models
and regression models.
Most rule extraction methods are developed based on constructed classi-
fiers, and extracted rules are used for representing decisions of the clas-
sifiers in classification and prediction. Some methods [276][288] extract
rules from regression models (Fig. 7.3).



160 7 Rule Extraction from RBF Neural Networks

Rule Boundaries

Crisp Boundaries Fuzzy Boundaries

Hyper-
Rectangular

Hyper-
Plane

Hyper-
Ellipse

Fig. 7.1. Rule extraction boundaries.

Rule Extraction
Approaches

The Pedagogical
Approach

The Decompositional
Approach

The Eclectic
Approach

Fig. 7.2. Rule extraction approaches.

7.2 Rule Extraction Based on Classification Models

Neural networks, support vector machines (SVMs), and decision trees are
popular due to their good generalization capabilities. In this section, major
rule extraction techniques are reviewed according to types of learning models
from which rules are extracted.
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Fig. 7.3. Rule extraction based on different learning models.

7.2.1 Rule Extraction Based on Neural Network Classifiers

In classification and prediction tasks, it has been shown that neural network
classifiers have remarkable generalization capabilities. Consider a data set
(xi, yi), where i = 1, 2, ..., N , input xi ∈ RL, and class label yi ∈ R. With-
out any prior knowledge about the relationship between input samples and
their corresponding class labels, neural networks are used to map the relation-
ship to network parameters. A neural network may have multiple layers. The
weights connecting one layer to the next layer are real valued. The activation
functions of hidden layer neurons are non-linear. These parameters lead to
complex decision functions of neural networks, which might be non-linear and
non-monotonic. These factors impede explicit description of how and why an
unseen sample is classified to a certain class.

Much research work has been carried out on extracting rules from MLPs
[155][200][270][284]. Generally speaking, approaches to extract rules from the
MLPs can be categorized according to the ways in dealing with individual neu-
rons. In [116] and [305], rules are extracted by interpreting outputs in terms of
inputs. However, hidden neurons are assumed to work independently in [116]
and [305], which limits the capability of the proposed rule extraction methods.
These two methods could be considered as the earliest pedagogical rule extrac-
tion approaches. The validity interval analysis (VIA) approach [305] improves
generalization compared to Gallant’s approach. Validity intervals are tuned as
constraining inputs and outputs by detecting and excluding activation values
which are not consistent with the trained neural network. This method is also
considered as a pedagogical method due to the direct mapping from inputs
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to outputs. Other early pedagogical rule extraction work includes the RU-
LENEG algorithm [244], which extracts rules from a trained neural network
by stepwise negation, and the DEDEC method [309], which finds minimal
information separating a pattern from the others based on the trained neural
network. Narazaki et al. [226] proposed a rule extraction method analyzing
the function learned by a trained NN. The rule boundaries were based on the
relationship between inputs and outputs learned by the NN, as well as on the
class label predicted by the NN. In [155], continuous inputs are represented
by linguistic inputs, and each possible combination of linguistic inputs is ex-
amined for generating rules. The number of rules is 4L, where L is the data
dimensionality. In addition, a GA is applied to select a small rule set. Jiang et
al. [162] transformed continuous data attributes into categorical values, and
the roles of an attribute in its categorical values are inspected in order to gen-
erate rules with the attribute as antecedents. The drawback lies in that it is
difficult to categorize attributes without sufficient prior knowledge of the data
distribution, and it is not practical to check the combination of categorical
attributes for generating rules when the data have high dimensionality.

Pedagogical rule extraction approaches have also been developed based
on recurrent networks. Vahed and Omlin [323] used a symbolic learning al-
gorithm with polynomial time to extract rules solely based on changes in
inputs and outputs of a trained network. The clustering phase is eliminated
in this rule extraction approach, which increases the fidelity of the extracted
knowledge.

Craven and Shavlik developed the TREPAN algorithm [66] to extract
rules by forming decision trees and querying the class labels of samples through
trained neural networks, which can deal with both continuous and discrete
attributes. Schmitz et al. [276] proposed an artificial neural network decision-
tree algorithm (ANN-DT), in which a univariate decision tree is generated
from a trained neural network.

In [162] and [361], rules are extracted from a neural network ensemble
by pedagogical approaches. Similar to the method in [66], Zhou and Jiang
[361] combined C4.5 with neural network ensembles to extract rules. Neural
network ensembles are expected to deliver better generalization compared to
single networks.

Decompositional rule extraction approaches are local methods since
the basic components of neural networks, including interconnected weights
and neurons, are decomposed to represent the relationship between the input
and the output.

In a number of decompositional rule extraction methods [146][200], clus-
tering techniques are used for grouping activation values of hidden neurons.
In these approaches, the connected weights and activation values are approx-
imated according to clustering results.

GAs have been widely used for practical problem solving and for sci-
entific modelling. With the capability of searching for desirable solutions in
the problem space, GAs have been employed for extracting rules from neural
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networks. Fukumi and Akamatsu [111] used GAs to prune the connections in
neural networks before extracting rules. Hruschka and Ebecken [146] proposed
a clustering genetic algorithm (CGA) to cluster the activation values of the
hidden units of a trained neural network. Rules were then extracted based
on the results from the CGA. Ishibuchi et al. [152][153][154][155][156] used
GAs to obtain concise rules by selecting important members from the rules
extracted from a neural network.

Decision trees are often combined with neural networks in both ped-
agogical and decompositional rule extraction approaches [273][283]. In the
decompositional approach proposed in [273], neural networks are first trained
to extract the essential relationship between the input and the output. The
relationship is thus embedded in interconnected weights and hidden neurons
of trained neural networks. Then, decision trees are applied to decompose
the relationship between inputs and hidden neurons, as well as the relation-
ship between hidden neurons and outputs. The results from decision trees are
combined to deliver rules.

7.2.2 Rule Extraction Based on Support Vector Machine
Classifiers

In recent years, support vector machines (SVMs) [39][40][42][163] have at-
tracted lots of interest for their capability of solving classification and regres-
sion problems. Successful applications of SVMs have been reported in various
areas, such as communication [122], time-series prediction [119], and bioinfor-
matics [34][222]. In many applications, it is desirable to know not only the
classification decisions but also what leads to the decisions. However, SVMs
offer little insight into the reasons why SVMs offer their final results.

In [231], rules are extracted after clustering. Distances from support
vectors to a cluster center are checked to generate rules based on the cluster.
The RulExSVM method [108] extracts hyper-rectangular rules which are then
fine tuned, with redundant rules merged to produce a compact rule set. This
will be described in a later chapter.

7.2.3 Rule Extraction Based on Decision Trees

As stated in previous paragraphs, decision trees are employed for facilitating
rule extraction from neural networks. Rules can be obtained from decision tree
classifiers directly since each distinct path through the decision tree produces a
distinct rule. In order to generate rules, each path is traced in the decision tree,
from the root node to the leaf node, recording the outcome as the antecedents
and the leaf-node classification as the consequences. Decision trees are easy
to construct automatically from labelled instances. Two well-known programs
for constructing decision trees are C4.5 [249] and CART (classification and
regression tree) [30]. Decision trees can be regarded as rule-based systems.
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Knowledge learned by decision trees can be transformed into expressive rules
easily. However, decision trees are prone to errors when data are noisy.

Decision trees [126][321] can form concise rules, in contrast to neural
networks. However, the accuracy of decision trees is often lower than neural
networks for noisy data and it is difficult for decision trees to tackle dynamic
data. Zhao [360] constructed a decision tree with each node being an expert
neural network, therefore combining the advantages of both the decision tree
and the neural network. Tsang et al. [315] and Umano et al. [321] combined
neural networks with decision trees to obtain better performance in rule ex-
traction.

7.2.4 Rule Extraction Based on Regression Models

Most rule extraction methods for analyzing data or explaining functions
learned by trained models are developed based on classification models. Classi-
fication models have discrete outputs, i.e., the categories of the inputs. Regres-
sion and approximation models are constructed for approximating continuous
outputs. There are fewer methods developed for extracting rules from learning
models with continuous outputs.

Setiono et al. [288] proposed a method REFANN (rule extraction from
function approximating neural networks) to extract rules from trained neural
networks for non-linear function approximation or regression. The trained
neural network is first pruned by removing redundant inputs and hidden neu-
rons. Then, either a three-piece or a five-piece linear function is used to ap-
proximate the continuous activation function of each hidden neuron. Finally,
the input space is divided into subregions. In each subregion, the function
values of samples are computed as a linear function of the inputs. That is, the
antecedents of a rule are a subregion represented by attributes, and the con-
sequence of the rule is a linear function of inputs as the final approximation
of the non-linear function learned by the neural network.

Tsukimoto [318] extracted rules from regression models and mathemat-
ical formulae. In the rule extraction technique called LRA (logical regression
analysis) [318], the trained neural network is decomposed into neurons. In this
algorithm, the output of each neuron in a trained neural network is assumed
to be monotone increasing in the algorithm [318].

7.3 Components of Rule Extraction Systems

Generally, a rule extraction system includes the following components:

1. Data collection
Data are accumulated in diverse organizations. For example, large volumes
of data are produced in transactions on the Internet, in supermarkets, and
in banks. Valuable information is hidden in huge volumes of data, which
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calls for intelligent and efficient techniques for discovering knowledge in
order to make better decisions, improve profits, save resources, and reduce
labor costs.

2. Data preprocessing
Diverse data formats and data objects are stored in data repositories.
Many variables (attributes) are collected for the purpose of illustrating
the concept of objects. However, not all attributes are necessary for an-
alyzing data, i.e., some irrelevant or unimportant data may be included
in data sets. In order to remove irrelevant information which may inter-
fere with the data analysis process, dimensionality reduction is widely
explored for both memory constraint and speed limitation. Hence, the
following preprocessing of the data is needed.
• Feature selection: much research work [27][168][198] has been carried

out in choosing a feature subset to represent the concept of data with
the removal of irrelevant and redundant features.

• Normalization: for a neural network, input values are usually normal-
ized to lie in [0, 1]. Nominal inputs should be transformed into numer-
ical ones.

3. The selection of rule extraction tools
Decision trees, neural networks, genetic algorithms, and fuzzy logic are
powerful data mining tools. Rules can be extracted from these tools.

4. The expression of the extracted rules
Usually, the rules are in IF–THEN forms. The premise parts of the rules
are composed of different combinations of inputs. There are three kinds
of rule decision boundaries:
• hyper-rectangular,
• hyper-plane,
• hyper-ellipse.
They are shown in Figs. 7.4–7.6. The hyper-rectangular boundary is the
simplest. However, since the distributions of data may be different for dif-
ferent problems, different decision boundaries or combinations of different
boundaries may be required (see Fig. 7.7) for different problems. Finding
the most efficient decision boundary type will be one of our future tasks.

7.4 Rule Extraction Combining GAs and the RBF
Neural Network

We describe a novel decompositional method which we proposed earlier [100]
to extract rules by combining genetic algorithms (GAs) and radial basis func-
tion (RBF) neural networks.

Firstly, the data are classified by an RBF classifier. Each hidden neu-
ron of the RBF classifier corresponds to a rule. During training of the RBF
network, we allow for large overlaps between clusters of the same class to
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Fig. 7.4. Hyper-rectangular decision boundaries.

Fig. 7.5. Hyper-plane decision boundaries.

Fig. 7.6. Hyper-ellipse decision boundaries.
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Fig. 7.7. Decision boundaries of mixed types.

reduce the number of hidden neurons while maintaining the classification ac-
curacy. The weights connecting the hidden neurons with the output neurons
are then pruned in order to clearly show which output neuron each hidden
neuron mainly serves. Next, centers of the kernel functions are used as initial
conditions when searching for the premises of rules with GAs. The interval for
each attribute in the condition part of each rule is encoded into a GA chro-
mosome. The fitness of a chromosome is determined by the accuracy of the
extracted rules. The rule set obtained is further processed to remove redun-
dant information. Our method leads to rules with hyper-rectangular decision
boundaries directly without the need for an intermediate step to transform
continuous attributes into discrete ones, unlike some existing methods based
on the multi-layer perceptron (MLP) [28][145].

7.4.1 The Procedure of Rule Extraction

Our GA-based rule extraction system consists of the following compo-
nents:
1. Data collection

Data sets from the UCI database are used to demonstrate algorithms.
2. Data preprocessing

For RBF neural networks, input values are usually normalized to lie in [0,
1]. Hence, each attribute of the data is normalized to lie in [0, 1]. If there
are nominal attributes, they are transformed into numerical ones.

3. The selection of rule extraction tools
In our algorithm, RBF neural networks and genetic algorithms are com-
bined for rule extraction. After preprocessing the data, the normalized
data are input to an RBF neural network. The RBF neural network is
trained as stated in Chap. 4. The weights connecting the hidden layer and
the output layer are then pruned. Each hidden unit corresponds to a rule.
The condition part of each rule is determined by GA searching.
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4. The expression of the extracted rules
Our extracted rules are in IF–THEN forms. The premise parts of the rules
are composed of various combinations of inputs. The decision boundaries
of the rules extracted in this algorithm are hyper-rectangular.

7.4.2 Simplifying Weights

The weights connecting the hidden neurons (units) and the output neurons are
important information for rule extraction. Let us determine the output neuron
which a hidden neuron mainly serves by simplifying the weights between the
hidden neurons and the output neurons. Consider the weight matrix:

W =

⎛
⎜⎜⎝

w11 w12 · · · w1M

w21 w22 · · · w2M

. . . . . . . . . . . . . . . . . .
wm1 wm2 · · · wmM

⎞
⎟⎟⎠ , (7.1)

where wik (i = 1, ..., m, k = 1, ..., M) is the weight which connects hidden
neuron i with output neuron k. m is the number of hidden neurons and M is
the number of class labels in the RBF neural network. We simplify the matrix
W to:

W1 =

⎛
⎜⎜⎝

0 · · · w1k1 · · · 0
0 · · · w2k2 · · · 0
. . . . . . . . . . . . . . . . . .
0 · · · · · · wmkM

0

⎞
⎟⎟⎠ , (7.2)

where wiki
is the maximum value of row i (i = 1, ..., M , ki corresponds to the

index of the maximum value of row i). Thus, W1 reflects the corresponding
output neuron which a hidden neuron mainly serves. Simulations show that
one weight in each row is significantly larger than the other weights in this
row.

7.4.3 Encoding Rule Premises Using GAs

The rules extracted here are in an IF–THEN form. Rule i (correspond-
ing to hidden neuron i) is written as follows:

IF attribute 1 is within the interval (L1i, U1i)
AND attribute 2 is within the interval (L2i, U2i)
.
.
.
AND attribute n is within the interval (Lni, Uni)

THEN the class label of the input pattern is ki.
Here Uji and Lji are the upper limit and the lower limit of interval j in rule i,
respectively. The center of the ith hidden unit is −→µi = {µ1i, µ2i, ..., µji, ..., µni}.
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Uji and Lji are set according to the trained RBF classifier. Initially, Uji is
randomly generated according to the uniform distribution within the range
[µji, 1], and Lji is randomly generated according to the uniform distribution
within the range [0, µji].

The input data space is separated into several subspaces through train-
ing the RBF neural network. Each subspace is represented by a hidden neuron
of the RBF neural network and is a hyper-ellipse. Since the decision boundary
of our rules is hyper-rectangular, we use a GA to search for the premise parts
of the rules. There are as many rules as hidden neurons. Hence, an efficient
architecture of the RBF neural network with fewer hidden units leads to a
compact set of rules.

We encode real value pji (p = U,L) using k binary bits:

G(p)
ji = {gk, gk−1, ..., gi, ..., g2, g1}, gi = 0, 1, i = 1, 2, ..., k. (7.3)

The relationship between pji and G(p)
ji is as follows:

pji = B(p)
ji/(2k − 1), (7.4)

where B(p)
ji is the decimal value corresponding to G(p)

ji:

B(p)
ji = gk ∗ 2k−1 + gk−1 ∗ 2k−2 + ... + g2 ∗ 21 + g1 ∗ 20. (7.5)

A chromosome in the population pool can be represented as a one-
dimensional binary string:

(G(U)
11, G

(L)
11, ..., G

(U)
n1, G

(L)
n1, ..., G

(U)
1m, G(L)

1m, ..., G(U)
nm, G(L)

nm).
(7.6)

7.4.4 Crossover and Mutation

We use the roulette wheel selection to select chromosomes in each gen-
eration, i.e., the selection probability is proportional to each chromosome’s
fitness. The two-point crossover is used in our algorithm. Two points are
randomly located in each of the two parents. The two parts of the parent
chromosomes between the two pairs of points are then exchanged to generate
new offspring. The probability of crossover is around 80%.

Mutation can prevent fixation at some particular locus. A locus in the
parent chromosome is selected randomly and the bit at the position is flipped,
i.e., if the original bit is 0, it is replaced by 1, and vice versa. Usually, the
mutation rate is relatively small to avoid random variations. However, at later
generations, the number of identical members increases, which leads to a stag-
nant state. In order to break stagnant states for searching for optimal results,
we use a dynamic mutation rate, i.e., if the number of identical members in a
population exceeds a certain percentage, the mutation rate is increased by a
certain amount. In [195], a dynamic mutation rate was introduced by main-
taining that the sum of the mutation rate and the crossover rate is 1, i.e., if
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the mutation rate increases, the crossover rate decreases. In addition, ‘elitism’
is used to retain the best members in the population pool.

7.4.5 Fitness Function

Our fitness function is:

F ({(Lji, Uji)}) = 1 − E({(Lji, Uji)}), (7.7)

where E({(Lji, Uji)}) is the error rate of the extracted rules and

{(Lji, Uji)} ≡ {(L11, U11), (L12, U12), ..., (Lnm, Unm)}. (7.8)

Each chromosome in the population pool corresponds to a rule set.
The accuracy of the rule set is calculated to evaluate the fitness level of each
chromosome. The better the fitness of the chromosome, the lower the error
rate of its corresponding rule set.

7.4.6 More Compact Rules

We have so far implicitly assumed that all attributes contribute to each
rule. However, some attributes contribute little to the description of the data,
or even do not contribute to the description at all, i.e., those attributes are
irrelevant or redundant for some rules and hence should be removed.

Based on our methods in the preceding sections, if there are m hidden
neurons in the trained RBF neural network, m rules will be adjusted by a GA.
Originally, the premise part of each rule is composed of n conditions (n is the
number of attributes). For example, for rule i, condition j is in this form: ‘IF
attribute j is within the interval (Lji, Uji)’. If an attribute does not affect a
certain rule, its variation in the rule will not affect the final rule decision. It
is desirable to remove this attribute from the rule. Assume that the minimum
value and the maximum value in the data for attribute j are minj and maxj ,
respectively. If the following conditions are satisfied:

Lji ≤ minj , (7.9)

and
Uji ≥ maxj , (7.10)

condition j will be removed from the original rule i. Thus, rule i will be
replaced by a new rule with fewer conditions.

7.4.7 Experimental Results

We use the Iris and Thyroid data sets [223] to demonstrate our method.
Each data set is divided into three parts, i.e., training, validation, and test
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sets. 90 patterns of the Iris data set are used for training, 30 patterns for
validation, and 30 patterns for testing. There are 215 patterns in the Thyroid
data set. 115 patterns are used for training, 50 patterns for validation, and 50
patterns for testing.

We set the ratio between the number of in-class patterns and the total
patterns in a cluster as θ = 100% (the initial θ-criterion) in our experiments.

Iris Data Set

Different population sizes may affect the rule extraction based on GAs. The
results shown in Table 7.1 are the average values of five independent exper-
iments with randomly selected initial cluster centers. The smallest number
of hidden neurons required to construct an RBF neural network classifier is
three for the Iris data set.

Next we use GAs to search for optimal rules based on the compact
RBF neural network obtained above. The results in Table 7.1 show that the
number of generations needed for reaching the top rule accuracy is reduced
with the increase of population size.

Table 7.1. The results under different population sizes for the Iris data set (average
of five runs).

Population size 40 80 160 200 240

Rule error rate 6.67% 6.67% 3.3% 2.67% 2.67%

Number of generations
needed to reach the accuracy 33.5 31 13.2 16 9

Thyroid Data Set

In Chap. 4, it had shown that when large overlaps among clusters of the same
class are permitted, both the number of hidden neurons and the classification
error rate are reduced. For the Thyroid data set, at least six hidden neurons
are needed.

Referring to the weight matrix of the Thyroid data set shown in Chap.
6, the simplified weight matrix is:

W1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.91 0.00 0.00
0.00 1.74 0.00
0.97 0.00 0.00
0.00 0.00 1.61
0.00 0.87 0.00
0.00 0.93 0.00

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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Next we use a GA to search for optimal rules based on the compact
RBF neural network obtained above. The results with different population
sizes are compared in Table 7.2. It shows that the number of generations
needed for approaching the optimal results decreases and the rule accuracy
increases, but eventually saturates, as the size of population increases. Chro-
mosomes in the initial population are initialized to be around the centers of
the Gaussian kernel functions. The number of bits for each G(p)

ji in Eq. (7.3)
is k = 6. The crossover probability is 90% and the mutation rate is dynamic.
The initial mutation rate is 10%. If the number of identical members in a
population exceeds 25%, the mutation rate is increased by 1%. The number
of elite chromosomes, which remain unchanged and live from one generation
to the next, is two. The GA searching procedure is stopped if the accuracy of
the extracted rules does not change by more than 0.5% for the validation set
for five consecutive generations.

Table 7.2. The results under different population sizes for the Thyroid data set
(average of five runs).

Population size 40 80 160 200 240 280

Rule error rate 25.2% 24.3% 22% 21% 20% 20%

Number of generations
needed to reach the accuracy 36.5 28 23 38 38.2 26

After the searching procedure of the GA based on the smallest trained
RBF neural network, the redundant premises in each rule will be checked
according to Eqs. (7.9) and (7.10). We obtain three symbolic rules for the Iris
data set. The average number of premises in each rule is two. The accuracy
of the symbolic rules that we obtain through the proposed method is 97.33%
for the Iris data set. There are six rules for the Thyroid data set. The average
number of premises in each rule is 4.2, and the accuracy of the extracted rules
is 80%. In addition, there is a default rule for each data set. The dominant
class will be the class label for the default rule if the data set is biased. If the
classes in the data set have the same number of patterns, then the default rule
corresponds to the last class. The smallest number of generations needed to
obtain the best accuracy is 200 for the Iris data set and 240 for the Thyroid
data set.

The linguistic rules for describing the two data sets obtained are as
follows. For the Iris data set, three rules are obtained using our method; the
accuracy is 97.33% for the test data set. These rules are not the same as rules
extracted from the MLP [28][145], but have the same accuracy.

Rule 1:
IF the petal length is within the interval (0.00, 2.08)

AND the petal width is within the interval (0.00, 1.11)
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THEN the class label is Setosa.
Rule 2:

IF the petal length is within the interval (2.08, 5.26)
AND the petal width is within the interval (0, 1.71)

THEN the class label is Versicolor.
Rule 3:

IF the petal length is within the interval (0.77, 6.9)
AND the petal width is within the interval (1.79, 2.5)

THEN the class label is Virginica.
Default rule:

the class label is Virginica.
For the Thyroid data set, six rules are obtained, and the accuracy is

80% for the test data set.
Rule 1:

IF attribute 1 is within the interval (116.64, 118.94)
AND attribute 3 is within the interval ( 0.00, 7.63)
AND attribute 4 is within the interval (0.00, 56.40)
AND attribute 5 is within the interval ( 0.00, 35.36)

THEN the class label is normal.
Rule 2:

IF attribute 1 is within the interval (33.22, 144.00)
AND attribute 2 is within the interval (13.54, 25.30)
AND attribute 3 is within the interval (0.00, 9.03)
AND attribute 4 is within the interval (0.00, 30.70)

THEN the class label is hyper.
Rule 3:

IF attribute 1 is within the interval (63.55, 140.36)
AND attribute 2 is within the interval (0.00, 13.35)
AND attribute 3 is within the interval (0.00, 7.20)
AND attribute 4 is within the interval (8.42, 8.93)
AND attribute 5 is within the interval (0.00, 53.84)

THEN the class label is normal.
Rule 4:

IF attribute 1 is within the interval (68.40, 144.00)
AND attribute 2 is within the interval (0.00, 19.06)
AND attribute 4 is within the interval (0.15, 15.94)

THEN the class label is hypo.
Rule 5:

IF attribute 1 is within the interval (11.19, 144.00)
AND attribute 2 is within the interval (24.11, 24.11)
AND attribute 4 is within the interval (0.00, 42.15)
AND attribute 5 is within the interval (0.00, 11.37)

THEN the class label is hyper.
Rule 6:

IF attribute 1 is within the interval (51.26, 108.86)
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AND attribute 2 is within the interval (14.57, 25.30)
AND attribute 3 is within the interval (7.33, 10.00)
AND attribute 4 is within the interval (0.00, 34.74)
AND attribute 5 is within the interval (0.00, 18.65)

THEN the class label is hyper.
Default rule:

the class label is normal.
Halgamuge et al. [128] extracted rules based on RBF neural networks;

however, five or six rules were needed to represent the concept of the Iris data
set (the accuracy is not available). Huber and Berthold [150] used eight rules
to represent the Iris data set (the accuracy is not available). In order to obtain
a small rule base, unimportant rules were pruned according to ranking [150];
however, the accuracy of the rules was reduced at the same time. McGarry
et al. [212][213][214] extracted rules from RBF neural networks directly based
on the parameters of Gaussian kernel functions and weights. In [212], the
accuracy reached 100%, but the number of rules was large (for the Iris data
set, 53 rules are needed). In [213] and [214], the number of rules for the Iris
data set was small, i.e., three, but the accuracy of the extracted rules was only
40% and around 80%, respectively. The rule set for the Iris data set extracted
by McGarryet al. [213] is included in Appendix A for comparison. The results
of the extracted rules for the Thyroid data set using other methods are not
available.

In order to evaluate the complexity of the extracted rule set, a com-
plexity measure [115] was calculated for comparison. The complexity measure
C was defined as:

C = 0.6NR + 0.4NP, (7.11)

where NR is the number of rules and NP is the number of premises (Table
7.3).

Much work has been carried out on extracting rules using MLPs
[28][145]. However, prior knowledge about how to divide the range of each
attribute into several parts is needed. In most cases, it is difficult to obtain
this knowledge.

In addition, in [28], no explicit rule corresponds to the Virginica class,
i.e., the patterns belonging to the Virginica class cannot be selected from
the data set independently, in contrast to other methods in Table 7.3. The
rules extracted by Bologna et al. [28] are shown in Appendix A. The rules
extracted by Hruschka and Ebecken [145] are also shown in Appendix A. In
the presented algorithm, rules with hyper-rectangular decision boundaries are
obtained directly without the need for transforming continuous attributes into
discrete ones.

7.4.8 Summary

We have described a novel rule-extraction algorithm that we proposed earlier
by combining GAs and RBF networks. Rule extraction is carried out from
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Table 7.3. A comparison of results for the Iris data set obtained with different
methods.

Methodology Rule Complexity Type of decision boundary
accuracy [115]

Modified RX algorithm 97.33% 3.4 Hyper-plane
based on MLP [145]

Inputs are transformed into 97.33% 2.2 Hyper-rectangular
discrete ones artificially
based on IMLP [28]

Based on RBF [214] 80% 3.4 Hyper-rectangular

Based on RBF [212] 100% 32.2 Hyper-rectangular

Our algorithm combining
GA and RBF 97.33% 2.6 Hyper-rectangular

a compact RBF classifier in order to explain and represent the concept of
data in a concise way. First, a compact RBF network is obtained by allowing
for large overlaps among the clusters belonging to the same class. Next, the
weights between the hidden layer and the output layer are simplified. Then,
the interval for each input in the condition part of a rule is determined by a
GA. Experimental results show that our rule extraction technique is simple
to implement, and concise rules with high accuracy are obtained. In addition,
rules extracted by our algorithm have hyper-rectangular decision boundaries,
which are desirable due to their explicit perceptibility.

7.5 Rule Extraction by Gradient Descent

7.5.1 The Method

The objective of tuning the rule premises is to determine the boundaries of
rules so that a high rule accuracy is obtained for the test data set. In this
section, we describe an algorithm to extract rules from trained RBF neural
networks using the gradient descent method, which we proposed earlier [105].

Before starting the tuning process, all of the premises of the rules must
be initialized. Assume that the number of attributes is n. The number of
rules equals the number of hidden neurons in the trained RBF network. The
number of the premises of the rules equals n. The upper limit Uji and the
lower limit Lji of the jth premise in the ith rule are initialized according to
the trained RBF classifier as:

U
(0)
ji = µji + σi, (7.12)

L
(0)
ji = µji − σi, (7.13)
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where µji is the jth coordinate of the center of the ith kernel function. σi is
the width of the ith kernel function.

We introduce the following notation. Suppose that η(t) is the tuning
rate at time t. Initially η(0) = 1/NI , where NI is the number of iteration steps
for adjusting a premise. NI is set to be 20 in our experiments, i.e., the smallest
changing scale in one tuning step is 0.05, which is determined empirically. E
is the rule error rate. Denote

Q
(t)
ji ≡ ∂E

∂Uji
|t, (7.14)

A
(t)
ji ≡ ∂E

∂Lji
|t . (7.15)

U
(t)
ji and L

(t)
ji , the upper and lower limits at time t, are tuned as follows.

U
(t+1)
ji = U

(t)
ji + ∆U

(t)
ji , (7.16)

L
(t+1)
ji = L

(t)
ji + ∆L

(t)
ji . (7.17)

Initially, we let
∆U

(0)
ji = η(0), (7.18)

∆L
(0)
ji = −η(0). (7.19)

Subsequent ∆U
(t)
ji and ∆L

(t)
ji are calculated as follows.

∆W
(t)
ji =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

η(t) if Q
(t−1)
ji < 0,

−η(t) if Q
(t−1)
ji > 0,

∆W
(t−1)
ji if Q

(t−1)
ji = 0,

−∆W
(t−1)
ji if Q

(t−1)
ji = 0 for

1
3NI consecutive iterations,

(7.20)

where W = U,L. When Q
(t)
ji = 0 consecutively for 1

3NI time steps, which

means that the current direction of premise adjustment is fruitless, ∆W
(t)
ji

changes its sign as shown in the fourth line of Eq. (7.20). In this situation, we
also let η(t) = 1.1η(t−1), which helps to keep the progress from being trapped.
Otherwise, η(t) remains unchanged.

Compared with the technique proposed by McGarry et al. [212][213][214],
a higher accuracy with concise rules is obtained with this method. In [212][214],
the input intervals in rules are expressed by the following equations:

Xupper = µi + σi − S, (7.21)

Xlower = µi − σi + S. (7.22)
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Here Xupper is the upper limit of the premise of a rule, and Xlower is the
lower limit. S is the feature ‘steepness’, which was discovered empirically to
be about 0.6 by McGarry et al.. µi is the n-dimensional center location of
rule i and σi is the width of the receptive field. We note that the empirical
parameter S may vary from data sets to data sets.

Two rule-tuning stages are used in our method. In the first tuning
stage, the premises of m rules (m is the number of hidden neurons of the
trained RBF network) are adjusted using gradient descent to minimize the
rule error rate. Some rules do not contribute to the improvement of rule accu-
racy, which is due to the following reason. The input data space is separated
into several subspaces through training the RBF neural network. Each sub-
space is represented by a hidden neuron of the RBF neural network and is
a hyper-ellipse. The decision boundary of our rules is hyper-rectangular. We
use gradient descent for searching the premise parts of rules. Since overlaps
(Fig. 7.8(a)) exist between clusters of the same class, some hidden neurons
may be overlapped completely when a hyper-rectangular rule is formed using
gradient descent (see Fig. 7.8(b)). Thus, the rules overlapped completely are
redundant for representing data and should be removed from the rule set. It
is expected that this action will not reduce the rule accuracy. The number of
rules should be fewer than the number of hidden neurons.

Based on the results of the first tuning stage, the second tuning stage
removes irrelevant and unimportant features by calculating an importance
factor, i.e., variations of rule accuracy on validation data when tuning the
feature. We set the importance factor threshold for removing a feature as 1%,
i.e., if the rule accuracy of the validation set does not decrease by 1% when
tuning a feature on the first training stage, the feature will be considered to
be unimportant, and will be deleted from the data set. Rules with boundaries
completely overlapped by other rules are redundant and will be removed.

7.5.2 Experimental Results

The Thyroid, Breast cancer, and Glass data sets available at the UCI database
[223] are used to demonstrate our method.

Table 7.4 shows that when large overlaps among clusters of the same
class are permitted, both the number of hidden neurons and the classification
error rate are reduced.

Thyroid Data Set

Four rules (Table 7.5) are extracted for the Thyroid data set by the method
described in this section. The average number of premises in each rule is three,
and the accuracy of the extracted rules is 92% for the test data set. Experimen-
tal results show that better rule accuracy is obtained by this rule extraction
method compared with the GA-based rule extraction method described in
Sect. 7.4. The rules for the Thyroid data set are as follows:
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Fig. 7.8. (a) Clusters in an RBF network, (b) hyper-rectangular rule decision
boundaries corresponding to the clusters.

Table 7.4. Reduction in the number of hidden units in the RBF network when
large overlaps are allowed between clusters for the same class.

Results Thyroid Breast cancer Glass

Classification Small overlap 94% 97.08% 78.41%
accuracy Large overlap 95.2% 98.54% 85.09%

Number of Small overlap 14.4 31 13
hidden units Large overlap 8 11 10

Rule 1:
IF attribute 2 is within the interval [11.97, 22.57]

AND attribute 3 is within the interval [2.50, 10]
AND attribute 5 is within the interval [0, 13.62]

THEN the class label is hyper-thyroid.
Rule 2:

IF attribute 2 is within the interval [15.49, 25.3]
AND attribute 3 is within the interval [1.3, 10]
AND attribute 5 is within the interval [0, 13.73]

THEN the class label is hyper-thyroid.
Rule 3:

IF attribute 2 is within the interval [0, 4.62]
AND attribute 3 is within the interval [0, 2.62]
AND attribute 5 is within the interval [0, 17.11]

THEN the class label is hypo-thyroid.
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Rule 4:
IF attribute 2 is within the interval [0.26, 7.81]

AND attribute 3 is within the interval [0.0, 2.61]
AND attribute 5 is within the interval [8.78, 55.73]

THEN the class label is hypo-thyroid.
Default rule:

the class label is normal.

Table 7.5. Rule accuracy and numbers of rules for the Thyroid data set by the
gradient descent method.

Results Thyroid

Training accuracy 98.26%
Rule accuracy Validation accuracy 96%

Testing accuracy 92%

The number of premises/rule 3

The number of rules 4

Glass Data Set

There are nine attributes, six classes, and 214 patterns in the Glass data set.
For a comparison with the results in [126], only attributes 2, 3, 4, 5, 6, 7,
and 8 were used in the Glass data set. Six rules (Table 7.6) are extracted for

Table 7.6. Rule accuracy and numbers of rules for the Glass data set by the gradient
descent method.

Results Glass

Training accuracy 84.85%
Rule accuracy Validation accuracy 86.21%

Testing accuracy 86.21%

The average number of premises per rule 3.33

The number of rules 6

the Glass data set by our method. The average number of premises in each
rule is 3.33, and the accuracy of the extracted rules is 86.21%. In [126], two
rule extraction results are shown for the same Glass data set. A rule accuracy
of 83.88% was obtained based on the C4.5 decision tree. A rule accuracy of
83.33% was obtained by the GLARE rule extraction method based on the
MLP. Hence, experimental results show that better rule accuracy is obtained
by our rule extraction method.
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Breast Cancer Data Set

Based on our method, we obtain four symbolic rules (Table 7.7) for the Breast
cancer data set. The average number of premises in each rule is two. The
accuracy of the symbolic rules obtained through our method is 96.35% for the
test data set. In comparison, Setiono [286] extracted 2.9 rules and obtained
94.04% accuracy for the Breast cancer data set based on the pruned MLP.

Table 7.7. Rule accuracy and numbers of rules for the Breast cancer data set by
the gradient descent method.

Results Breast cancer

Training accuracy 95.35%
Rule accuracy Validation accuracy 95.62%

Testing accuracy 96.35%

The average number of premises per rule 2

The number of rules 4

7.5.3 Summary

We have described a novel rule-extraction algorithm from RBF networks based
on the gradient descent method. First, a compact RBF network is obtained by
allowing for large overlaps among the clusters belonging to the same class. Sec-
ond, the rules are initialized according to the training result. Next, premises
of each rule are tuned using gradient descent theory. The unimportant rules
which do not affect the rule accuracy will be removed from the rule set. The
unimportant features will also be deleted from the data set based on the results
obtained in the first tuning stage. Fourth, rules left will be tuned using gradi-
ent descent theory again. Experimental results show that our rule extraction
technique is simple to implement, and concise rules with high accuracy are ob-
tained. In addition, rules extracted by our algorithm have hyper-rectangular
decision boundaries, which are desirable due to their explicit perceptibility.
The approach eliminates the need for an error-prone transformation from con-
tinuous attributes into discrete ones as required in MLP-based methods.

7.6 Rule Extraction After Data Dimensionality
Reduction

Data dimensionality reduction (DDR) is usually carried out before inputting
patterns to classifiers. In order to obtain good results in data mining, careful
selections of relevant data are desirable. Irrelevant or redundant attributes
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interfere with knowledge discovery from data sets. In this section, we carry
out rule extraction after data dimensionality reduction shown in Chap. 5.
According to the attribute ranking results, the attribute subsets which lead
to the best classification results are selected and used as inputs to a classifier,
such as an RBF neural network used in this book. The complexity of the
classifier can thus be reduced and its classification performance improved. The
results are input to our rule extraction system to discover knowledge from data
sets. Rules with hyper-rectangular decision boundaries are extracted based on
the trained RBF neural networks and DDR using the gradient descent method.

7.6.1 Experimental Results

Iris Data Set

150 patterns of the Iris data set are divided into three sets, i.e., 90 patterns
for training, 30 for validation, and 30 for testing. For the Iris data set, based
on the attribute subset {3, 4} selected in Chap. 5, two rules are obtained with
two antecedents per rule. The accuracy is 100% for the test data set (Table
7.8). We compare our rule extraction results for the Iris data set with other
methods in Table 7.9.

Table 7.8. Rule accuracy and numbers of rules for the Iris data set based on DDR.

Training accuracy 100%
Rule accuracy Validation accuracy 96.67%

Testing accuracy 100%

The number of premises/rule 2

The number of rules 2

Monk3 Data Set

There are six attributes in the Monk3 data set. The Monk3 data set has a
training set with 122 patterns and a test set with 421 patterns. We divide the
test set into 200 patterns for validation and 221 patterns for testing.

For the Monk3 data set, based on the attribute subset {2, 4, 5} selected
in Chap. 5, we obtain three rules with three antecedents per rule (Table 7.10).
The rule accuracy is 98% for the test data set. Setiono [286] extracted two
rules, 5.83 antecedents per rule, and 100% rule accuracy for the Monk3 data
set based on the pruned MLP.
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Table 7.9. A comparison of results for the Iris data set obtained with different
methods.

Methodology Rule Type of decision boundary
accuracy

Modified RX algorithm 97.33% Hyper-plane
based on MLP [145]

Inputs are transformed into 97.33% Hyper-rectangular
discrete ones artificially
based on IMLP [28]

Based on RBF [214] 80% Hyper-rectangular

Based on RBF [212] 100% Hyper-rectangular

Our algorithm 100% Hyper-rectangular

Table 7.10. Rule accuracy and numbers of rules for the Monk3 data set based on
DDR.

Training accuracy 99.4%
Rule accuracy Validation accuracy 96.6%

Testing accuracy 98%

The number of premises/rule 3

The number of rules 3

Thyroid Data Set

There are five attributes in the Thyroid data set. There are 215 patterns in
the Thyroid data set, 115 patterns for training, 50 for validation, and 50 for
testing.

In Chap. 5, χ = 0.4 is selected because it leads to the smallest attribute
subset {2, 3, 5} with the lowest classification error rates.

Table 7.11 shows the properties of rules for the Thyroid data set. The
number of rules is fewer compared to results obtained by GAs (shown in Sect.
7.4), and the rule accuracy is also higher.

Table 7.11. Rule accuracy and numbers of rules for the Thyroid data set based on
DDR.

Training accuracy 95.65%
Rule accuracy Validation accuracy 95%

Testing accuracy 95%

The number of premises/rule 3

The number of rules 4
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Rules for the Thyroid data set obtained by the present approach are:
Rule 1:

IF attribute 2 is within the interval [11, 25.3]
AND attribute 3 is within the interval [2.9, 10]
AND attribute 5 is within the interval [0, 10.9]

THEN the class label is hyper-thyroid.
Rule 2:

IF attribute 2 is within the interval [15, 23.5]
AND attribute 3 is within the interval [0.77, 2.9]
AND attribute 5 is within the interval [0, 10.2]

THEN the class label is hyper-thyroid.
Rule 3:

IF attribute 2 is within the interval [0.0, 5.12]
AND attribute 3 is within the interval [0.0, 2.12]
AND attribute 5 is within the interval [0, 19.6]

THEN the class label is hypo-thyroid.
Rule 4:

IF attribute 2 is within the interval [0.0, 8.5]
AND attribute 3 is within the interval [0.0, 3.0]
AND attribute 5 is within the interval [14.2, 56.3]

THEN the class label is hypo-thyroid.
Default rule:

the class label is normal.

Breast Cancer Data Set

For the Breast cancer data set, based on the attribute subset {2, 3, 7} selected
in Chap. 5, we obtain four rules with three antecedents per rule (Table 7.12).
The rule accuracy is 97.8% for the test data set. Setiono [286] extracted 2.9
rules and obtained 94.04% accuracy for the Breast cancer data set based on
the pruned MLP.

Table 7.12. Rule accuracy and numbers of rules for the Breast cancer data set
based on DDR.

Training accuracy 96%
Rule accuracy Validation accuracy 97%

Testing accuracy 97.8%

The number of premises/rule 3

The number of rules 4
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The rules for the Breast cancer data set are below:
Rule 1:

IF uniformity of cell shape is within [2, 10]
AND bland chromatin is within [4, 10]

THEN this case is Malignant.
Rule 2:

IF uniformity of cell shape is within [5, 10]
AND bland chromatin is within [2, 10]

THEN this case is Malignant.
Rule 3:

IF uniformity of cell size is within [3, 10]
AND uniformity of cell shape is within [3, 10]

THEN this case is Malignant.
Default rule:

this case is benign.

Mushroom Data Set

There are 22 nominal attributes and 8124 patterns in the Mushroom data
set. Among the 8124 patterns, 4500 patterns are for training, 1812 are for
validation, and 1812 are for testing.

For the Mushroom data set, based on the attribute subset {5, 9, 20}
selected in Chap. 5, we obtain 16 rules with the antecedents per rule (Table
7.13). The rule accuracy is 98.86% for the test data set. By the RulEx method
[9], four rules, 78 premises, and a rule accuracy of 97.02% were obtained.
Setiono [286] extracted three rules with 4.3 premises per rule and obtained
98.12% accuracy for the Mushroom data set based on the pruned MLP. Better
rule accuracy is obtained by our method, though the number of rules is larger.

Table 7.13. Rule accuracy and numbers of rules for the Mushroom data set based
on DDR.

Training accuracy 99.33%
Rule accuracy Validation accuracy 100%

Testing accuracy 98.86%

The number of premises/rule 3

The number of rules 16

7.6.2 Summary

In this section, we extracted rules from trained RBF neural networks after data
dimensionality reduction. Our SCM is used to rank importance of attributes
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first. According to the ranking results, different attribute subsets are used as
inputs to RBF classifiers. The attribute subsets with the lowest classification
error rates and the least numbers of attributes are selected. Rules are extracted
based on feature subsets selected. Compared to other methods, more concise
and accurate rules are extracted for the Iris and Breast cancer data sets.
Although, for the Monk3 data set, the rule accuracy is slightly lower, the
number of antecedents per rule is smaller than other methods. For the Thyroid
data set, compared with the rule method based on GAs in Sect. 7.4, the
rule accuracy is higher and fewer rules are needed after data dimensionality
reduction. For the Mushroom data set, a high rule accuracy is obtained with
fewer premises compared to other methods.

In general, DDR results lead to a less complicated RBF neural network
architecture. As a decompositional algorithm, in this rule extraction method,
one hidden unit corresponds to one initial rule. Hence, compact rules can
be extracted from compact RBF neural networks. Experimental results show
that our rule extraction method is simple for implementation and can lead to
concise rules and high rule accuracies.

7.7 Rule Extraction Based on Class-dependent Features

7.7.1 The Procedure of Rule Extraction

In this section, rule extraction is carried out for concise rules based on class-
dependent features. We demonstrate our approach using computer simula-
tions. The rule extraction algorithm described here is based on the trained
RBF neural network classifier with class-dependent features. For each class,
a subset of features is selected in order to discriminate the class from other
classes. A group of kernel functions is generated for the class based on the
selected feature subset. Each hidden neuron of the RBF neural network is
responsive to a subset of input patterns (instances).

7.7.2 Experimental Results

The Thyroid data set and the Wine data set from the UCI Repository of
Machine Learning Databases [223] are used in this section to demonstrate our
algorithm.

Thyroid Data Set

It is shown in the feature masks (Table 6.3) that feature 1 does not play
an important role in discriminating classes. Hence, the T3-resin uptake test
can be unnecessary in this type of Thyroid diagnosis. For class 3, feature
2 can discriminate class 3 from other classes. Features 2 and 3 are used to
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Table 7.14. Rule accuracy for the Thyroid data set based on class-dependent fea-
tures.

Rule accuracy Full features Class-dependent
features

Training set 94.57% 95.54%

Validation set 95.35% 94.6%

Testing set 90.7% 95.48%

discriminate class 2 from other classes. Features 2, 3, 4, and 5 are used to
discriminate class 1 from other classes.

Two rules are extracted for the Thyroid data set based on class-
dependent features. The rule accuracy (in Table 7.14) is 95.54% for the train-
ing data set, 94.6% for the validation data set, and 95.48% for the test data
set. With full features as inputs, two rules are obtained, and the rule accuracy
is 94.57% for the test data set, 95.35% for the training data set, and 90.7%
for the validation set. Thus, higher rule accuracy and more concise rules are
obtained when using class-dependent features compared to full features.

Rules for the Thyroid data set based on class-dependent features are:
Rule 1:

IF attribute 2 is within the interval (12.9, 25.3 )
AND attribute 3 is within the interval (1.5, 10)

THEN the class label is hyper-thyroid.
Rule 2:

IF attribute 2 is within the interval (0, 5.67)
THEN the class label is hypo-thyroid.

Default rule:
the class label is normal.

Wine Data Set

It is shown in the feature masks (Table 6.4) that the feature subset {2, 4, 5, 6, 7, 9, 11, 12}
plays an important role in discriminating class 1 from other classes, the fea-
ture subset {3, 4, 5, 6, 7, 10, 11, 12, 13} is used to discriminate class 2 from other
classes, and the feature subset {2, 3, 11, 12, 13} is used to discriminate class 3
from other classes.

Seven rules are extracted for the Wine data set based on class-dependent
features. The rule accuracy (in Table 7.15) is: 88.7% for the training data set,
83.4% for validation data set, and 86.1% for the test data set. With full fea-
tures as inputs, seven rules are obtained, and the rule accuracy is 90.6% for
the training data set, 77.8% for the validation set, and 86.1% for the test set.
Thus, the same rule accuracy and more concise rules with fewer premises are
obtained when using class-dependent features compared to using full features.
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Table 7.15. Rule accuracy for the Wine data set based on class-dependent features.

Rule accuracy Full features Class-dependent
features

Training set 90.6% 88.7%

Validation set 77.8% 83.4%

Test set 86.1% 86.1%

7.7.3 Summary

In this section, we have described a rule extraction method from our RBF
classifier based on class-dependent features. The discriminatory power of each
feature for discriminating classes is considered for each class. Different feature
subsets are selected for different classes individually based on their ability in
discriminating the class from other classes, which show the relationship be-
tween the feature subset and the class concerned. The class-dependent feature
selection results obtained above provide a new way for rule extraction. The
Thyroid and Wine data sets are used to demonstrate the algorithm. Experi-
mental results show that our algorithm is effective in reducing the number of
feature inputs and leads to compact and accurate rules simultaneously.
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A Hybrid Neural Network For Protein
Secondary Structure Prediction

8.1 The PSSP Basics

In this chapter, we will use hybrid neural networks to deal with the protein
Secondary Structure Prediction (PSSP) task.

8.1.1 Basic Protein Building Unit — Amino Acid

A protein sequence is an array of amino acids, which is called a primary pro-
tein structure. Each amino acid is encoded by three out of four DNA bases,
i.e., A, C, T, and G. The amino acids are the basic units of protein sequences
and are referred to as residues. The triplet code implies that there are 43 = 64
possible permutations. However, there are only 20 amino acid types and this
results in a redundancy in the genetic code. Thus, almost each of the amino
acids (with the exceptions of Methionine and Tryptophan) is encoded by syn-
onymous permutations which are interchangeable in the sense of producing
the same amino acid. For convenience of presentation, each amino acid type is
represented by an alphabetic letter. For example, the amino acid named Ala-
nine is represented by the letter ‘A’. A protein sequence in the alphabetical
representation is thus a long sequence of characters, as in the example shown
in Fig. 8.1. A protein sequence may be subject to evolutionary changes that
may induce mutations, including insertions, deletions, or substitutions, to the
original protein sequence and thereafter produce different functions.

8.1.2 Types of the Protein Secondary Structure

Secondary structures are regular structural elements which are formed by hy-
drogen bonds between relatively small segments of the protein sequence. Often
the driving force for the formation of a secondary structure is the saturation
of backbone hydrogen donors (NH) and acceptors (CO) with intramolecular
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Name: Complex Of Troponin C With A 47 Residue (1-47) Fragment Of Troponin I
PDB ID:  1A2X:B
Sequence:

 1) GDEEKRNRAI        TARRQHLKSV         MLQIAATELE             KEEGRREAEK    QNYLAEH
2) GDEEKRNRAI        TARRQHLK _ _        MLQIAATELE             KEEGRREAEK    QNYLAEH
3) GDEEKRNRAI        TARRQHLKSV         MLQIAATELEFFE      KEEGRREAEK    QNYLAEH
4) GDEEKGFRAI        TARRQHLKSV          MLQIAATELE             KEEGRREAEK    QNYLAEH

Note
1) Original Protein Sequence (47 Residues)
2) Deletion: several amino acids deleted from the chain
3) Insertion: amino acids FFE was inserted into the original sequence
4) Substitution: the replacement of amino acids segment by GF

Fig. 8.1. Alphabetical representation of the primary protein sequence and protein
mutations

hydrogen bonds. This saturation allows the protein to bury hydrophobic side-
chains in its interior (hydrophobic core) without conflicting with the polar
backbone. There are three common secondary structures in proteins, namely
α-helix, β-strand , and coil.

α-helix

An α-helix is formed from a connected stretch of amino acids. The α-helix
is characterized by hydrogen bonds along the chain, which are almost co-
axial. The α-helix is the most abundant helical conformation found in globular
proteins. The average length of an α-helix is around 10 residues.

β-strand

A β-strand is the principal component of a β-sheet. The β-sheet is character-
ized by hydrogen bonds crossing between chains. Each participating β-strand
in a β-sheet is not continuous in terms of the primary sequence and does not
even have to be close to another β-strand in the sequence. A β-strand has a
sequence of 5-10 residues in a very extended conformation.

Coil

Approximately one-third of all residues in globular proteins are contained in
coils. The coils in a protein serve to reverse the direction of the polypeptide
chain. Coils vary in length.
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Fig. 8.2 illustrates the visualized secondary structures of the protein.
In the diagram shown, the dark ribbons represent helices. The gray ribbons
are β-strands that form the β-sheet. The spring-like strings in between these
two secondary structures are the coils that bind them.

Fig. 8.2. Three types of the protein secondary structure: α-helices are the dark
ribbons on the boundary of the diagram, the gray ribbons in the center are the
β-strands that form the β-sheet, the coils are the spring-like strings that bind the
α-helix and the β-strand.

8.1.3 The Task of the Prediction

The term ‘prediction’ in the protein secondary structure prediction (PSSP)
domain carries a similar meaning as the data mining term ‘classification’:
given a residue of the protein sequence, the predictor should classify it into
one out of three secondary structure states based on certain characteristics of
the residue. Note that the outcome of the prediction is a state of the secondary
structure rather than the secondary structure itself. One residue is only the
constitutional element of a secondary structure. A protein secondary structure
consists of several residues sharing the same secondary structure state. In
other words, the secondary structure state is associated with one amino acid
while the secondary structure is for an ensemble of amino acid residues. In the
literature, the prediction of the protein secondary structure can be conducted
in two stages [164][255][260][262]: the sequence-structure (Q2T) prediction and
the structure-structure (T2T) prediction.

Sequence-Structure Prediction

The Q2T prediction predicts the protein secondary structure from the primary
protein sequence of amino acid residues. Given a protein sequence, the Q2T
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predictor maps each entry of the sequence to the relevant secondary structure
state by using the data representation information of the input residue. The
data representation attempts to capture information related to the type of the
amino acid, the sequence context (that is, what are the neighboring residues
of the input), the evolutionary information, etc. The sequence-structure pre-
diction makes a major contribution in the prediction in terms of accuracies.

Structure-Structure Prediction

As defined previously, a secondary structure is an ensemble of consecutive
amino acid residues sharing the same secondary structure state. The neigh-
boring sequence positions usually present some correlation characteristics in
terms of the secondary structure formation. For example, it is usually ob-
served that an α-helix contains at least three consecutive amino acids which
are all in the α-helix state. Suppose that there are alternative occurrences
of the α-helix and the β-strand states (i.e., αβαβ...) in the outcome of pre-
dicted secondary structures; then this prediction must be wrong. The above
mentioned example is only a simple example of the correlations existing in
the neighboring residues. There are also other correlations that are known or
unknown. Therefore, the T2T prediction, which is based on the outputs of
the first stage, is needed. This is the second stage of prediction. This stage of
prediction attempts to correct unrealistic predictions from the previous stage
and thus enhances the overall prediction accuracy. This stage of prediction is
the complementary to the sequence-structure prediction.

Fig. 8.3 illustrates the scenario of the secondary structure prediction
with two stages of implementations.

It is important to note that the same type of amino acids needs not to
be predicted to belong to the same secondary structure state in the secondary
structure prediction. For instance, in Fig. 8.3, the 12th and the 20th amino
residues counted from the left-hand side are both of type ‘F’ yet are assigned to
two different secondary structure states. It is rather the distinct characteristics
embedded within the residue such as the sequence context, the evolutionary
information, biochemical properties, speed of translation, etc., that play a
more significant role in the formation of the protein secondary structure.

It is acknowledged that the neighboring residues have an impact on the
predictive capability of the secondary structure. Therefore, the prediction of
the secondary structure at each sequence position should not solely rely on the
residue at that position. Rather, a window expanding towards both directions
of the residue should be used to include the sequence context. We will discuss
the issue in detail later.
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Fig. 8.3. The protein secondary structure prediction: two stages of implementation.

8.2 Literature Review of the PSSP problem

The problem of protein secondary structure prediction was stimulated by the
first publication of the protein 3D structure in 1960 [172][238], which at-
tempted to find the correlations between the content of a protein sequence
(amino acids) and that of the secondary structure (α-helix, β-strand, and
coil). This was when the first generation of secondary structure predictors was
born. In this generation, most methods were based on single residue statis-
tics [55][72][194][256][275]. Preferences to particular amino acids from protein
sequences were extracted and used in experiments. The accuracies of these
methods were found to be over estimated [260].

With the growth of known protein structures obtained from exper-
iments, the second generation exploited segment statistics to predict the
secondary structure. A consecutive segment of residues was studied to find
how likely the residue of a central segment belonged to a secondary struc-
ture state. Major algorithms applied in this generation included statisti-
cal information [55][225], sequence patterns [258][302], multi-layer networks
[26][140][175][292], multivariate statistics [220], and nearest-neighbor algo-
rithms [271].

The first and the second generations could reach an accuracy level no
higher than 70%.

The earliest application of the artificial neural network on protein sec-
ondary structure prediction was introduced by Qian and Sejnowski (1988)
[248]. In their work, they used a three-layer back-propagation network. The
input data was binary encoded by a code scheme called BIN21. Each input
data item was a sliding window of 13 residues obtained by extending six
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sequence positions from the central residue. The focus of each observation
was only on the central residue, i.e., only the central residue was assigned
to one out of three possible secondary structure states: the α-helix, the β-
strand, or the coil. Minor variations to the BIN21 scheme were used in two
studies: Kneller et al. [175] added one additional input unit to present the
hydrophobicity scale of each amino acid residue and showed slightly increased
accuracy; Sasagawa and Tajima [272] used the BIN24 scheme to encode three
additional amino acid alphabets, B, X, and Z. As all above applied a local
encoding scheme which utilized only the local information of the protein se-
quences, a performance ceiling of 65% accuracy was reached on their own
data sets. In 1995, Vivarelli et al. [329] used a hybrid system that combined a
local genetic algorithm (LGA) and neural networks for the protein structure
prediction. Although the LGA has advantages in selecting network topologies
efficiently, the result still showed that the ultimate performance of the network
could not go beyond the limited accuracy, regardless of what type of network
architectures was applied.

More research focusing on analyzing and improving the secondary
structure prediction has been carried out [16][68][266][358].

A significant improvement of the 3-state secondary structure predic-
tion accuracy reaching over 70% came from Rost and Sander’s work (1993
and 1996) [261][262]. In their method (PHD), a similar multi-layer back-
propagation network was used. In contrast to using the BIN21 coding scheme,
a new key aspect—the evolutionary information in the form of frequency sta-
tistics from the multiple sequence alignments was introduced to represent the
input data. The inclusion of the protein family information in this form in-
creased the prediction accuracy by around six percent. Moreover, a second cas-
caded neural network architecture, which performed the additional structure–
structure prediction, was used to introduce the correlations between the sec-
ondary structure of adjacent amino acid residues in the sliding window. With
a data set of 126 protein sequences (RS126), Rost and Sander broke the magic
70% accuracy barrier and achieved an overall network performance as high as
72% in accuracy. Further neural network architecture and machine learning
refinements were employed by Riis and Krogh [255]. An adaptive encoding of
the input amino acids by the neural network weight sharing technique was
used to reduce the number of weights needed. The encoding is adaptive in
that the encoding could learn throughout the training process. Specialized
networks were designed for each secondary structure class and combined us-
ing another neural network. Despite the fact that the architectural design
was more complicated, the experiments on the RS126 data set, which again
made use of the frequency statistics from the multiple sequence alignment,
reached an overall accuracy of 71.3%, which was still similar to that of the
PHD method.

More recently, Jones [164] used the position-specific scoring matrix
(PSSM) [6][291], obtained from the online alignment searching tool PSI-Blast
[24], to numerically represent the protein sequence. A PSSM was constructed
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automatically from a multiple alignment of the highest scoring hits in an ini-
tial BLAST search. The PSSM was generated by calculating position-specific
scores for each position in the alignment. Highly conserved positions of the
protein sequence received high scores and weakly conserved positions received
scores near zero. Due to its high accuracy in finding biologically similar pro-
tein sequences, the evolutionary information carried by PSSM is more sensitive
than those profiles obtained by other multiple sequence alignment approaches.
With the neural network architectural similar to that of Rost and Sander’s,
Jones’ PSIPRED method achieved an accuracy as high as 76.5% using a much
larger data set than RS126.

In 2001, Hua and Sun [148] also proposed a support vector machine
(SVM) approach. This was an early application of the SVM on the PSSP
problem. In their work, they first constructed three one-versus-one and three
one-versus-all binary classifiers. Three tertiary classifiers were designed based
on these binary classifiers through the use of the largest response, the decision
tree, and votes for the final decision. By making use of Rost’s data encoding
scheme, they reached an accuracy of 71.6% and a segment overlap performance
of 74.6% on the RS126 data set.

8.3 Architectural Design of the HNNP

As we discussed previously, the secondary structure predictor needs two
stages. In this section, we describe the architectural design of a hybrid neural
network predictor (HNNP). The predictor consists of two artificial neural
networks: a radial basis function (RBF) neural network at its first stage for
the sequence–structure (Q2T) prediction and a multi-layer perceptron (MLP)
neural network at the second stage for the structure–structure (T2T) predic-
tion.

Figure 8.4 illustrates the overall flow of the HNNP. The ‘sequence con-
tent’ storage contains a number of protein sequences used for the training or
the prediction. At each flow through the predictor, only one residue instead
of an entire protein sequence is fed as input.

8.3.1 Process Flow at the Training Phase

The flow of the prediction in the training phase is as follows:

1. Given a residue in alphabetic form, it is numerically encoded into a 20-
dimensional vector by the ‘encoder A’. The 20-dimensional vector contains
the frequency statistics obtained from the multiple sequence alignment for
the residue.

2. The 20-dimensional vector is then passed to a ‘normalizer’. The purpose
of the normalization is to restrict values of the vector entries to within
the range (0, 1).
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Fig. 8.4. Framework of the hybrid neural network predictor (‘MLPNN’ stands for
‘MLP neural network’ and ‘RBFNN’ stands for ‘RBF neural network’).

3. The sequence–structure prediction block is a three-layer radial basis func-
tion neural network. In this network, the overlapped clustering technique
proposed by us [107] was applied to construct the RBF kernels. We have
shown in previous chapters that the overlapped clustering technique as-
sisted in enhancing the noise-rejection capability of the classifier and could
improve the classification accuracy. In this work, we wish to explore the
noise-rejection capability of such an RBF neural network in improving
the PSSP accuracy. In the training phase of the sequence–structure pre-
diction, the input was fed into this block to establish the network. This
includes the discovering of a set of radial basis function kernels as well as
the optimal weight set between the second and the third layers. After the
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network is established, the training samples are fed in again one by one.
The output is stored as the training data for the next stage.

4. The output from the previous stage is further encoded by the ‘encoder B’
by real values lying in (0, 1).

5. The structure–structure prediction block is implemented by a three-layer
MLP network. The block attempts to correct the predictions made from
the sequence–structure prediction and improve the overall prediction ac-
curacy. In the training phase of the structure–structure prediction, the
outputs of the first stage are fed into the MLP network one by one. The
network learns from these samples and the network parameters are tuned
accordingly to minimize the cost function. When the parameters are op-
timized, the training of the overall predictor is done and testing could be
carried on this trained system.

8.3.2 Process Flow at the Prediction Phase

The prediction phase performs the prediction on the testing data set and the
results are evaluated for accuracy. Given a protein sequence, the flow of the
prediction is as follows:

1. The sequence is properly encoded by the ‘encoder A’.
2. The set of 20-dimensional vectors representing the whole protein sequence

is normalized.
3. Each protein residue is fed into the sequence–structure prediction block

one by one. The RBF neural network uses the established parameters to
predict what the relevant secondary structure state is. This prediction
generates the primary outcome of the prediction.

4. The output from the previous stage is again encoded by ‘encoder B’ and
fed into the MLP network. The MLP uses the learned parameters to gen-
erate the final secondary structure prediction.

5. The ‘Decision Maker’ uses the winner-take-all (WTA) technique to com-
plete the secondary structure assignment. The secondary structure class
with the highest probability is selected to be the predicted secondary
structure state. The outcome of secondary structure patterns of a whole
sequence is saved in the storage as the ‘secondary structure content’ of
the sequence.

8.3.3 First Stage: the Q2T Prediction

Architecture

The architectural design of the Q2T prediction is shown in Fig. 8.5. The RBF
neural network consists of three layers: the input layer, the hidden layer, and
the output layer.
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Fig. 8.5. Architecture of the sequence–structure prediction: the first stage.

The input layer is where the protein sequence as input is fed into the
network. A protein sequence has to be encoded by a certain data representa-
tion scheme to allow neural networks to manipulate it. The data representation
scheme used will be described later in detail.

The hidden layer consists of a set of kernels corresponding to the pro-
totypes in the input space. In this layer, the data is clustered into a finite
number of radial regions relevant to the input space. The response of each re-
gion can be represented by a kernel function. Typical transfer functions which
may be used for these kernels include:

• Gaussian functions;
• Spline functions;
• Multi-quadratic functions;
• Inverse multi-quadratic functions.

In this book, we use the popular Gaussian transfer function of the form:

g(x) = e−d(x)2/2σ2
, (8.1)

where x is the input pattern, d(x) is the distance between the input pattern
x and the center of the kernel, and σ defines the width of the kernel.

If the input pattern x is one-dimensional, the shape of the Gaussian
function is like a bell (Fig. 1.4), which possesses the highest response of 1 at
the center and quickly degrades when x moves away from the center. The re-
sponses of the kernel for data points whose distances to the center of the kernel
exceed twice the kernel width (2σ) are rather weak and may be neglected.

The output layer linearly combines the outputs of hidden neurons. For
any output neuron i, the output can be formulated as follows:
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y
(3)
i (x) =

m∑
j=1

g
(2)
ij (x)wij , (8.2)

where g
(2)
ij (x) is the output of the j th kernel for the input pattern x, and

wij is the weight associated with the ith output neuron and the j th hidden
kernel. m is the total number of Gaussian kernels (or hidden neurons) in the
hidden layer. In our work, each output neuron corresponds to one of the three
secondary structure states. The value associated with each neuron indicates
the likelihood that the input pattern belongs to that secondary structure
state. The decision of the final predicted secondary structure state is made by
the winner-take-all (WTA) technique. Assume that the secondary structure
states assigned to output units 1, 2, 3 are helix, strand, and coil, respectively.
Given an input pattern x, the computed output values of three neurons are
0.1, 0.2, and 0.7, respectively. According to the WTA technique, 0.7 implies
the highest likelihood, and the second output neuron wins. The input pattern
is thus predicted to be in the secondary structure state associated with the
second output neuron – strand.

8.3.4 Sequence Representation

Local Coding Scheme

The sequence of the protein is a series of alphabetical characters. To use it as
an input to the neural network, it is necessary to code them into numerical
form first before the network could perform manipulations on them. Early
work on the PSSP problem used to apply binary coding schemes to fulfill
this task. Among them, one typical encoding scheme used is the orthogonal
data representation [248], the BIN21. Under this scheme, each amino acid is
represented by a 21-dimensional vector. The first 20 entries (bits) of the vector
correspond to the occurrences of 20 types of the amino acids at the specific
sequence position. If the amino acid to be coded is of type i, then the ith
entry of the vector will be coded as 1, while the remaining 19 bits are 0. The
additional bit of the vector, the 21st bit, is called a spacer. As we mentioned
earlier, each input data is a sliding window of length N ; there may be cases
where the leading or the lagging part of the window may be missing, e.g.,
the starting residues or the terminating residues of a protein sequence. In this
case, the spacer would be able to indicate the completeness of the window.

Position-specific-scoring-matrix (PSSM)

The problem of the BIN21 encoding scheme is that it does not incorporate
evolutionary information, which has been shown to provide input domain-
specific knowledge in protein secondary structure prediction. To address this
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problem, a multiple sequence alignment method is applied for the coding of
each residue. To give a simple concept of what multiple sequent alignment is,
let us consider a pairwise alignment case, without even taking gap insertions
into consideration: given two sequences, for instance, ‘GDEEKRNRAI’ and
‘GDSDKNSAAI’, they can be aligned as illustrated in Fig. 8.6. Assume that
a score of +3 is awarded to one column having residue match (e.g., column 1)
and a penalty score of −3 otherwise (e.g., column 3). The aggregated score (6)
of all the columns is an alignment score raised from this alignment. Note that
these two sequences could have many other possible alignments when gaps
are allowed to be inserted into sequences and this results in more alignment
scores. Among them, the alignment resulting in the highest score is called the
optimal alignment and this will give a measurement of the similarity between
two sequences. While the pairwise sequence alignment is used to determine

Sequence Alignment Example

Original Seq.:    G   D   E   E   K   R   N   R    A   I
                            |     |     |     |    |      |    |      |     |     |
Aligned Seq.:    G   D   S   D   K   N   S    R   A   I

Score:              +3 +3 -3 -3 +3 -3 -3 +3 +3 +3

  = 6

Fig. 8.6. An example illustrating the fundamental sequence alignment theory.

the similarity between two strings, the multiple sequence alignment is used to
determine the similarity among multiple strings, i.e., searching for the optimal
multiple alignment.

A position-specific scoring matrix (PSSM) is a matrix based on the
amino acid frequencies at every position of a multiple sequence alignment.
For example, the following three sequences (or segments of protein sequences)
have been aligned as shown:
NTEGEWI
NITRGEW
NIGGECC
The frequencies at column 2 for amino acid types T and I are 0.33 and 0.67,
respectively. The frequencies for the remaining 18 amino acid types are all
0. However, in order to model every possible sequence, amino acids that do
not appear in this column of the multiple alignment will also be considered
and assigned a value called a pseudo-count. This results in a 20-dimensional
frequency vector with 20 non-zero entries for the column 2 sequence position.
Each vector entry corresponds to one of the 20 types of amino acid. Taking
the logarithm of each vector entry over the background frequency (e.g., this
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may be a priori probability of the corresponding amino acid over the entire
protein sequence database) gives the final score called log-odds score. The log-
odds score shows how conservative an amino acid is in its sequence position.
Highly conserved positions receive higher scores, weakly conserved positions
are scored lower. As each sequence position can be represented by one 20-
dimensional vector, the entire protein sequence can thus be represented by a
N ×20 position-specific scoring matrix, where N is the length of the sequence.
Hence, in our example, each of the three protein sequences can be represented
by a 7 × 20 PSSM. More details can be obtained from [6][124][291].

As mentioned earlier, the neighboring residues have an impact on the
formation of protein secondary structures. It is important to incorporate this
information. For this purpose, we may use a sliding window spanning N
residues with the residue of observation located at the center. Thus, each
data (residue) is actually represented by an N × 20 matrix. In this sliding
window, each window position shares a different degree of importance in de-
termining the secondary structure state. Figure 8.7 illustrates the raw data
format for the 10th residue Aspartic acid (D) of the Hydrolase (O-Glycosyl)
protein sequence (PDB ID: 119L) using the sliding window size N = 15. In this
representation, the central residue extends over (N−1)/2 = 7 leading/lagging
neighboring amino acids and forms a matrix of N × 20 entries. Moreover, one
more spacer is added to indicate the completeness of the window. Note that
the spacer is only used as the window status indicator and does not contribute
to any numerical manipulations regarding the PSSM. In the example given,
the spacer 0 implies that both its seven leading and seven lagging residues of
the window are available and the window is complete. However, if the focus of
observation is on the first residue (position −7) of the window, with sequence
alphabet I, the spacer value is −5. This means that for the window centered
at that residue, five amino acid residues ((N − 1)/2 residues – residue ‘M’
– residue ‘N’ = 5|N=15) are missing and the minus sign indicates that the
missing residues are located at the leading part of the window.

Based upon the raw matrix obtained, the data is further normalized to
the range (0, 1) by using the standard logistic function:

x′ =
1

1 + e−x
. (8.3)

After scaling, the ultimate input data changes to the form as shown in
Fig. 8.8.

8.3.5 Distance Measure Method for Data — WINDist

The distance between any two data points may be computed by the Euclidean
distance, assuming that each attribute of the vectors shares equal importance.
In our clustering problem, however, each data point is represented in the form
of a matrix, and each row (i.e., window position) of the matrix may have a
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Fig. 8.7. Input data representation: the raw profile (15 × 21) corresponds to the
10 th residue of the Hydrolase protein sequence.
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Fig. 8.8. Input data representation: the normalized profile.
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different degree of importance. Therefore, a data specific distance measure
should be used. Here, we propose a unique distance measure WINDist, which
is based on the Euclidean distance and takes the data characteristics into
consideration. To compute the distance between two data points, the basic
idea of WINDist is as follows: given two data points (matrices) A and B, we
first match the two data points row by row, e.g., the first row of matrix A
matches that of matrix B while the last row of matrix A matches that of
matrix B. We then compute the distance between the two row vectors using
the Euclidean distance and finally use the weighted sum of those row distances
as the final distance measure.

What follows is a more detailed description of WINDist. Denote the
ith data point of a given sequence in the following form:

Di = [ri
−(N−1)/2, r

i
−(N−1)/2+1, ..., r

i
0, ..., r

i
k, ..., ri

(N−1)/2−1, r
i
(N−1)/2], (8.4)

where ri
k is a 20-dimensional vector corresponding to the kth window position,

and k is either a positive or a negative integer in the range [−(N −1)/2, (N −
1)/2]. To compute the distance of Di to another data point Dj , we first calcu-
late the distance between any two matching rows using the Euclidean distance
as follows:

di,j
k = ‖ ri

k − rj
k ‖, (8.5)

where ‖ · ‖ denotes the Euclidean norm. As the central position (represented
by ri

0) makes the most important contribution to the prediction while the im-
portance of the neighboring ones degrades with position, we assign a weighting
factor to each position. If k = 0, it means that this corresponds to the cen-
tral position and the weight associated with it is the most important, i.e., a
weighting factor of 1. For the other positions, we assume that the significance
of these residues degrades with their displacements to the central position.

For ease of explanation, let us first define a term p(ab) addressing the
relative displacement of two window positions with corresponding residue ap-
pearances a and b, respectively:

p(ab) = displacement of b to central residue − displacement of a to cen-
tral residue.

From the definition, it is obvious that the p value is a relative difference of
‘closeness’ to the position at the center. In Fig. 8.9, the p value p(E, L) = 4 for
residues E and L means that E is four positions closer to the central residue
than L. Now we shall find a way to determine the weighting factor associated
with each row of the matrices. Assume that the degrading of the significance
of each row vector is in a unique ratio b, which we call the base. The base
value should be within the range [0, 1]. If the base value is 1, it is equivalent
to the case where no weighting is used and all window positions are equally
important. We propose the two alternative weighting schemes:
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I  F  E  M  L  R  I  E  G  L  R  L  K  I

Fig. 8.9. Relative displacement of the residues.

1. Scheme A: unsupervised weighting scheme. The weighting factor degrades
in a geometric proportion with respect to the displacement. In other words,
the weighting factor associated with residue r could be formulated as

wr = b|p(r,c)|, (8.6)

where p(r, c) is the displacement of the residue r with respect to the central
residue c.

2. Scheme B: supervised weighting scheme. For two residues r1, r2 with
p(r1, r2) = 1, the weighting factor degrades if and only if the correspond-
ing secondary structures are different. The reasoning for this weighting
scheme is as follows: the secondary structure of a protein is usually formed
by some consecutive amino acid residues. The consecutive residues shar-
ing the same secondary structure states may contribute equally to the
formation of the secondary structure and hence are of equal importance.
Figure 8.10 illustrates how the weighting factors are assigned for the given
sequence and secondary structure pair, ‘IFEMLRIDEGLRLKI’ and ‘HH-
HHHEEEEHHHHHC’, respectively.

I    F     E    M    L    R    I  D    E     G    L    R   L    K    ISequence:

Secondary Structure:

Weighting Factor:

H H H H H E E E E H H H H H C

b b b b b 1 1 1 1 b b b b b b2

Fig. 8.10. Supervised weighting factor assignment: scheme B

With the Euclidean distances computed for each row vector, the ag-
gregation of all these distances from the N residue positions gives the final
estimation of the distance measure:
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d(ri, rj) =
(N−1)/2∑

k=−(N−1)/2

(wk ‖ ri
k − rj

k ‖)/
(N−1)/2∑

k=−(N−1)/2

wk, (8.7)

where wk is the weighting factor obtained by scheme A or scheme B.
Up to now, our distance measure deals with the situation that both the

data points have a full sliding window. However, there are situations where the
sliding window might not be full, e.g., the starting or the terminating (N−1)/2
residues of the sequence. In this case, we only consider the overlapped part of
two windows. Equation (8.7) is then generalized to the following form:

d(ri, rj) =
h∑

k=−l

(wk ‖ ri
k − rj

k ‖)/
h∑

k=−l

wk, (8.8)

where l is the number of overlapped positions in the leading half-window
and h is the number of overlapped positions in the lagging half-window. For a
complete window, both the numbers of overlapped leading and lagging vectors
are equal to (N − 1)/2 and hence Eq. (8.7) is a special case of Eq. (8.8).

8.3.6 Second Stage: the T2T Prediction

Architecture

The second stage of our predictor is a three-layer MLP neural network. Similar
to the RBF neural network, the network consists of an input layer, a hidden
layer, and an output layer. Although the back-propagation technique allows
any number of layers of the network to be trained, a three-layer structure is
sufficient for approximating any function with finitely many discontinuities to
an arbitrary precision, provided that the activation functions of the hidden
units are non-linear (the universal approximation theorem) [69][113][131][144].
The architectural layout of the network is shown in Fig. 8.11.

The input layer is where the windowed data are fed in. The number of
neurons required depends on the number of numerical entries in the windowed
data and is N × L in our problem, where N is the window size and L is the
vector dimension.

The input to the second layer is the weighted sum of the input data:

s
(l)
k =

ml−1∑
i=1

(w(l)
ki y

(l−1)
i + θl−1), (8.9)

where w
(l)
ki is the weight connecting the kth neuron in layer l = 2 and the ith

neuron in layer l−1 = 1 and θl−1 is the bias feedfowarded from layer l−1 = 1.
y
(l−1)
i is the output of the ith neuron in layer l− 1, i.e., the input layer. ml−1

is the number of the neurons in layer l − 1.
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Fig. 8.11. Architecture of the structure–structure prediction: the second stage.

With the input computed, the output or the activation of the neuron
is obtained by a sigmoid function:

y
(l)
k =

1

1 + e−s
(l)
k

, (8.10)

where y
(l)
k is the activation of s

(l)
k in the kth neuron of the lth layer. The

behavior of a sigmoid function with scalar input x is shown in Fig. 8.12.
Transformed by the sigmoid function, the inputs with large positive

values are activated closely to 1 while large negative ones are activated to 0.
For the inputs close to 0, the responses are linearly related to the input values.
The outputs of the second-layer neurons are thus smoothly restricted to the
range (0, 1).

The output layer functions exactly the same as the hidden layer. The
input to this layer is the weighted sum of outputs of the neurons from the
preceding layer. A sigmoid function is then used to smoothly restrict the
output to a desirable range.

By comparing the RBF neural network and the MLP neural network, it
can be seen that the networks are quite similar. The data is propagated layer
by layer, from the input layer to the output layer. Each layer performs some
transformation to the data before it is forwarded. The output layer constitutes
three neurons, each corresponding to one secondary structure class.

Despite the similarities mentioned above, the MLP network still pos-
sesses some variations in several aspects:

• The input neuron of the MLP neural network as in Fig. 8.11 is an assembly
of N × L subneurons, with each subneuron connecting to all the neurons
of the hidden layer. The capital letter L here represents the dimensionality
of the vector of each residue.
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Fig. 8.12. Response of the sigmoid function.

• Weights between the input layer and the hidden layer neurons are adjusted
during training. For the RBF neural network, all weights between these
two layers are fixed to be 1.

• The activation function used in the hidden layer of an MLP neural network
is different from that of the RBF neural network.

• In the RBF neural network, the weighted sum of the activations from the
hidden layer is directly used as the output. In the MLP neural network,
the additional smooth limiting is performed by the output neurons using
the sigmoid function. In other word, the output neurons in the RBF neural
network are linear, whereas the output neurons in the MLP neural network
are non-linear.

Due to the architectural difference, the encoding of the data is slightly different
from that of RBF neural network.

8.3.7 Sequence Representation

Input preprocessing

The output of the first stage is a three-dimensional vector, with each entry
representing how likely the residue in observation belongs to the corresponding
secondary structure class. In other words, the outputs of the RBF neural
network could be interpreted as the probabilities that the residue belongs to
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the three classes. Thus, it is expected that the values are to be restricted
within (0, 1) and the sum of them shall equal to 1. Besides, it is also desirable
that the data fed into the MLP neural network is in that range. Therefore, a
preprocessing of the data is performed before the outputs of the first stage are
directly used as the inputs of the MLP network. To satisfy these constraints,
the normalized exponential transformation technique softmax [31] is used:

Qj(x) =
eVj(x)∑3

k=1 eVk(x)
, (8.11)

where Vj(x) is the j th entry of the output vector and Qj(x) is the transformed
value.

Encoding Scheme

Considering the correlations existing between neighboring residues, a sliding
window similar to that in the RBF neural network also needs to be used in the
MLP neural network. As mentioned, there may be cases where the window is
not complete. On the other hand, the input layer of the proposed MLP neural
network architecture consists of a fixed number: N ×L neurons, which means
that the network could only accept the data with a full sliding window. To
resolve the conflict, some modifications have to be done to the data before they
could actually be used. Similar to the case of the RBF neural network, a spacer
is used as an additional entry to the three-dimensional vector. The spacer is an
indicator of the window status. For each window, if the vector corresponding
to the window position contains realistic values (e.g., has a sequence residue
at that position), the spacer is set to 0. Otherwise, the spacer is set to 1. In
the case where the window position is not realistic, artificial values would have
to be filled. Here, we adopted the scheme used by Rost and Sander [262] in
their work: all the entries where data are not available in incomplete windows
are set to 0 except for the spacer. Figure 8.13 shows the encoded form of the
data for (a) a full-window case and (b) a partial-window case. A window size
of N = 15 is used in the illustration.

Similar to that in the RBF network, the data should also be expanded
on its neighborhood before it can be used to set up the network or carry out
the prediction.

The training of the hybrid neural network predictor is composed of two
parts, i.e., the training of an RBF neural network and the training of an MLP
neural network, which will follow the work stated in previous chapters.
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Fig. 8.13. Two examples of encoded form of the data: (a) a full window and (b) a
partial window.

8.4 Experimental Results

8.4.1 Experimental Data set

In the PSSP, if an unknown protein sequence shares a significant degree of
sequence similarity with the known protein sequence or is a homology, the
structure of the unknown protein can be reliably predicted by the simple com-
parison and the reference between the two sequences [6][53][54][178][277][278].
On the other hand, it is not always true in practice that a new sequence has its
homology whose structure has been identified. Hence, to evaluate prediction
performance fairly, the bias arisen from homology has to be removed. More-
over, according to Cuff and Barton [68], sequences with low sequence similarity
yet significant structural similarity can remain by pairwise sequence alignment
methods. Structural similarity also needs to be investigated so as to further
remove the bias towards producing favorable prediction accuracy.

The data set used here was originally developed and used by Jones [164]
for training and testing his PSIPRED method. The data can be downloaded
from the website http://bioinf.cs.ucl.ac.uk/psipred/. The PSIPRED data set
contains 2235 protein sequences in total for the training set and 187 sequences
for the testing set. The data set was derived by considering constraints for
the fair prediction evaluation, as discussed earlier. All the 187 test sequences
have been scanned against the training sequences to ensure that they did not
share the similar fold. Jones believed that such a practice is at least equivalent
to the 7-fold cross-validation test and the testing result should not be over
estimated [164]. With such specially designed training and test data sets, no
further 7-fold cross validation [16][262] is needed to avoid the over-estimation.

As the secondary structures given in the data set consist of eight states:
H, I, G, E, B, S, T, -, and the scheme outlined by Rost and Sander [262] was
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adopted to reduce them to the three secondary structure states (α-helix, β-
strand, and coil). H and G are reduced to the helix state. E and B are reduced
to the strand states, and all others are assigned to the coil state.

8.4.2 Accuracy Measure

Per-residue Accuracy

The per-residue-based accuracy measurement emphasizes the fraction of in-
dividual residues that are correctly classified into their secondary structure
states. The measure could either return an aggregate accuracy over all se-
quences or an average of the accuracies of all individual protein sequences.
What follows is a mathematical description of the way the accuracy is de-
rived. Suppose that we have a protein sequence k and define

aij = number of residues predicted to be in secondary structure state
j and observed to be in state i,

(8.12)
where i, j ∈ {1 = helix, 2 = strand, 3 = coil}. The sum of aij for i from 1 to
3 gives rise to the number of residues predicted to be in class j:

P k
j =

3∑
i=1

aij . (8.13)

The sum of aji for i from 1 to 3 gives rise to the number of residues observed
to be in class j:

Ok
j =

3∑
i=1

aji. (8.14)

The sum of all residues in the data set is

Nk =
3∑

i=1

3∑
j=1

aij . (8.15)

For class r ∈ {α = helix, β = strand, c = coil}, the accuracy achieved is thus
computed as:

Qk
r =

ajj

Oj
, (8.16)

where r, j are the indices representing the same class. The overall accuracy of
the prediction for protein sequence k, denoted as Qk

3 , is the aggregated sum
of the correct predictions over the total number of residues in the sequence:

Qk
3 =

∑3
j=1 ajjN

k

N
. (8.17)
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Hence, if the data set contains p protein sequences with N amino acid residues
in total, the prediction accuracy Q3 for all the p sequences is:

Q3 =
∑p

k=1 Qk
3Nk

N
. (8.18)

The average of the accuracies for all individual sequences can be computed as

Q3s =
∑p

k=1 Qk
3

p
. (8.19)

Matthews’ Correlation

A more complicated accuracy measure is to use Matthews’ correlation [210]
which evaluates the success of predicting residues for each secondary structure
state. The formula for computing Matthews’ correlation is given by:

Ci =
pini − uioi√

(pi + ui)(pi + oi)(ni + ui)(ni + oi)
, (8.20)

for i ∈ {α, β, c}. Here pi is the number of correctly predicted residues in the
secondary structure state i; ni is the number of those correctly not assigned
to the state i; and ui is the number of underestimated and oi is the number of
overestimated predictions. Mathematically, these terms can be expressed as

pi = aii,

ni =
3∑

j �=i

3∑
k �=i

ajk,

oi =
3∑

j �=i

aji,

ui =
3∑

j �=i

aij ,

(8.21)

for i ∈ {α, β, c}.

Segment-Overlap Measure

The segment overlap measure (SOV) was first proposed by Rost et al. in
1994 [263] and later modified and improved by Zemla et al. in 1999 [355].
This scheme gives a measure of how well the predicted secondary structure
segments are matched with the observed (obtained from experiments) ones.
The accuracy is computed by counting the predicted and the observed seg-
ments and measuring their overlaps. Let (s1, s2) denote a pair of overlapping
segments. Define set S(i) as



212 8 A Hybrid Neural Network For Protein Secondary Structure Prediction

S(i) = (si, s2) : s1 ∩ s2 �= �; (8.22)

represent the set of all overlapping pairs of segments (s1, s2). s1 and s2 are
both in the secondary structure state i.

Another set, which defines the set of all segments (s1, s2) sharing no
overlapping in their segment extents, is defined as

S′(i) = s1 : ∀s2, s1 ∩ s2 = �. (8.23)

The segment overlap measure for state i is thus defined as

SOV (i) = 100 × 1
N(i)

∑
S(i)

[
minov(s1, s2) + δ(s1, s2)

maxov(s1, s2)
× len(s1)

]
, (8.24)

with the normalization value

N(i) =
∑
S(i)

len(s1) +
∑
S′(i)

len(s1). (8.25)

The sum in Eq. (8.24) and the first sum in Eq. (8.25) are computed from all
the segment pairs in state i which overlap by at least one residue, the second
sum in Eq. (8.25) is computed from the remaining segments in state i found
in the observed (or target) assignment, len(s1) is the number of residues in
segment s1, minov(s1, s2) is the length of the actual overlap of s1 and s2, i.e.,
for which both segments have residues in state i, maxov(s1, s2) is the total
extent for which either of the segments s1 and s2 has a residue in state i, and
δ(s1, s2) is defined as:

δ(s1, s2) = min

⎧⎪⎪⎨
⎪⎪⎩

maxov(s1, s2) − minov(s1, s2),
minov(s1, s2),
int(len(s1)/2),
int(len(s2)/2).

(8.26)

Generalization based on Eq. (8.24) results in a 3-state SOV measurement:

SOV (i) = 100×
⎡
⎣ 1

N

∑
i∈[α,β,c]

∑
S(i)

minov(s1, s2) + δ(s1, s2)
maxov(s1, s2)

× len(s1)

⎤
⎦ , (8.27)

where the normalization value N is the sum of N(i) over all three secondary
structure states.

Q2T Prediction — the Raw Prediction

As we discussed earlier, the prediction of the secondary structure is imple-
mented in two stages: the sequence–structure prediction and the structure–
structure prediction. For ease in implementation, training of the two stages is
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performed independently. Upon the accomplishment of the training, the test
data may then be passed through the stages of the system. The output from
the second stage determines the final secondary structure state assignment.

The Q2T prediction is implemented by an RBF neural network. To
obtain the optimal performance of the prediction, several parameters related
to the network topology, the kernel formation, etc., have to be selected through
experiments. More precisely, these parameters include

1. The base ratio b. This term determines the degrading of the weighting
factors in the proposed distance measure WINDist as described previously.

2. The alternative WINDist scheme A or B. Both schemes are proposed on
the basis of some assumptions. Experimental results have to be used to
find the better scheme.

3. The window size N . A small window size may lose useful information as-
sociated with farther-neighboring residues. On the other hand, bringing
residues too distant away into observation may introduce noise, as the
information from those residues is usually irrelevant. We need to find a
suitable window size which exploits a sufficient amount of relevant infor-
mation without introducing noise.

4. Purity level ρ of the clusters (kernels). A higher ρ value results in a more
accurate response from the kernel for training data, but may result in
lower generalization performance for test data.

Ideally, these parameters should be tuned together such that a combination
which leads to the optimal performance of the Q2T prediction could be found.
However, doing so would demand a huge amount of computational burden and
time, especially when the data used in our work is large in scale and high in
dimensionality. According to our simulations, each trial of training takes 1–2
days to finish by the computational resource available to us (a 32-CPU Linux
cluster, 3GHz, with 2GB RAM for each CPU). For this reason, we adopted
a relative suboptimal yet time-saving tuning scheme: change some sets of
parameters, fix the rest.

Now, we shall determine which parameters are to be tuned first. Ba-
sically, the training of the RBF network starts by applying the overlapped
clustering algorithm. The parameters affecting this early step are the base
ratio b and the WINDist scheme. Both variables would affect the distance
measure between data points and hence influence the clustering. Thus, these
two variables are to be tuned first.

8.4.3 Experiments with the Base and Alternative Distance
Measure Schemes

Strategy

To determine a suitable base ratio b and the best WINDist scheme, we run
simulations on two WINDist schemes (A, B) independently. For each WINDist
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scheme, the base value b is varied from 0.3 to 0.7 with an increment of 0.1
each time. The purpose of doing so is first to find the best base value for each
scheme and then select the scheme which outperforms the other.

Results

Table 8.1 shows the experimental results.

Table 8.1. Performance comparison of two WINDist schemes: the base value b is
varied within the range [0.3, 0.7] with an increment of 0.1 each time

Base Scheme A Scheme B
(b) Q3(%) Qα(%) Qβ(%) Qc(%) Q3(%) Qα(%) Qβ(%) Qc(%)

0.3 74.0 74.9 56.6 82.7 74.6 75.6 57.7 82.8

0.4 74.5 75.5 56.5 83.3 74.9 75.8 58.0 83.4

0.5 74.7 75.6 56.9 83.5 75.2 76.2 57.9 83.7

0.6 74.4 75.3 56.4 83.3 75.1 76.0 57.9 83.6

0.7 74.2 75.4 56.1 82.8 74.6 76.1 56.8 82.5

We can see by observing the table that the general performance of
scheme B is superior to that of scheme A. The highest Q3 accuracy that scheme
B could reach is 75.2% when the base value is set to 0.5. It happens that the
highest Q3 of scheme A is also reached at the same base yet the accuracy is
only 74.7%. This accuracy is lower than that of scheme B. Comparison of Q3

values at other base values also shows that scheme B is superior to scheme A.
Thus, it is believed that the supervised WINDist Scheme is more appropriate
to our system and that all further simulations would use this scheme.

Besides, by observing the Q3 column of scheme B, we can see that base
values either larger or smaller than 0.5 degraded the prediction accuracies.
Expectedly, this base value has more relevantly reflected the degrading of the
significance of the neighboring residues and is more relevant to our proposed
WINDist scheme.

8.4.4 Experiments with the Window Size and the Cluster Purity

Strategy

By deciding the optimal value for the base and the appropriate scheme for the
distance measure in advance, we have effectively reduced the computational
demand such that it is affordable to us. Now we are left with two major
parameters:
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• The window size which determines the span of the sliding window.
• The cluster purity which decides the minimum purity that a cluster (ker-

nel) has to satisfy.

To get the best performance of the first stage, we have tried different combi-
nations of these two parameters. To carry out the simulations in an orderly
way, the following strategy is adopted:

1. Define some possible starting values of both parameters. For the window
size, we started with a value of 15, which is within the range of the popular
window sizes [7, 17] [348]. The recent predictors like PHD, PSIPRED, etc.,
have already reached an accuracy level higher than 70%; considering that
the contribution of a kernel should also be reliable enough to the predictor,
we selected a purity level of ρ = 0.6 as the starting point.

2. Define a step size for each parameter. For a window size N , a minimum
step size of 2 is used; this is equivalent to expanding one position further
towards the both sides of the neighborhood. For the purity level, the step
size is set to ∆ρ = 0.05 (except the change of the purity level from 0.6 to
0.7, as the accuracies obtained from the initial purity level are relatively
low).

3. Run simulations on the initial parameter set.
4. Keep the window size intact and increase the purity level step by step

until it reaches 1.0. Conduct experiments at each step.
5. Increase the window size N by 2. Repeat step 4.
6. Repeat step 5 until a significant performance degrading is observed.
7. Reset the window size to the starting point. Decrease the window size

step by step and repeat experiments with respect to ρ at each step. Stop
further trials if a significant decay in performance is observed.

8. Record the accuracies returned from all trials of simulation.

By conducting experiments in the above strategy, we could see how
the generalization performance of the prediction of the RBF neural network
is impacted by the purity value ρ. Meanwhile, we would also be able to tell
which window size is optimal to the prediction of the RBF neural network.

Results

Table 8.2 shows the experimental results for window size N = 11 with the
purity level ρ changing from 0.6 to 1.0. The Q3 column of the table shows the
overall accuracies obtained with different purity levels. From the column, we
see that the change of accuracy against the purity includes two parts. In the
first part, when ρ keeps increasing from 0.6 through 0.85, the accuracy is either
increasing or maintained at the top accuracy value. This is where the higher
cluster purity plays an ‘active’ role: the higher purity level makes each cluster
more accurate in response and hence improves the prediction accuracy. Also,
higher cluster purity results in better noise rejection. When the purity goes



216 8 A Hybrid Neural Network For Protein Secondary Structure Prediction

Table 8.2. Prediction accuracies of the sequence–structure prediction with window
size N = 11 and various purity levels ρ.

Window Purity Accuracies
size (N) level (ρ) Q3(%) Qα(%) Qβ(%) Qc(%)

0.6 72.9 73.9 55.1 81.6
0.7 74.7 75.5 57.1 83.4
0.75 74.8 75.6 57.2 83.5

11 0.8 74.8 75.6 57.3 83.5
0.85 74.8 75.6 57.3 83.4
0.9 74.7 75.3 57.3 83.6
0.95 74.6 75.1 57.2 83.5
1.0 74.3 74.9 56.7 83.1

beyond 0.85 and increases further to 1.0, this is the second part of the change.
In this part, any further increase in ρ reduces the generalization capability of
the RBF network and this results in the drop of the prediction accuracy.

Tables 8.3, 8.4 and 8.5 show the experimental results for window size
N ∈ {13, 15, 17}, {19, 21, 23}, and {25, 27}, respectively. In these results, a
similar scenario of the accuracy change against the purity may be observed.
On the other hand, the ρ values for peak accuracies are not exactly the same
for different window sizes. This variation is reasonable: the window size de-
termines the span of the window; for various window sizes, the information
carried by the data may be different; consequently, the distance computed for
any two data points would also change, and this, in turn, influences the value
of the optimal purity level ρ for clustering. Despite the difference in optimal
purity value ρ, what important is that there is always a ρ balancing the accu-
rate responses of the kernels and the good generalization performance of the
RBF neural network.

To see the performance of the RBF prediction with different window
sizes, we summarize the best accuracies obtained for each window size in Table
8.6. From this table, the relationship of the window size N and the prediction
accuracy of the RBF neural network is quite obvious. The best Q3 accuracy
is 75.6% when the window size is N = 21. A window size either larger or less
than 21 leads to the degraded prediction performance. In other words, the
window size 21 has most relevantly captured the useful information hidden in
the neighborhood and serves best for the learning of our RBF neural network.

8.4.5 T2T Prediction — the Final Prediction

Feasibility of the Back-Propagation

With the optimal prediction performance reached at the first stage, we should
continue optimizing the second stage such that the overall prediction capabil-
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Table 8.3. Prediction accuracies of the sequence-structure prediction with various
window sizes N and purity levels ρ: N ∈ {13, 15, 17}.

Window Purity Accuracies
size (N) level (ρ) Q3(%) Qα(%) Qβ(%) Qc(%)

0.6 73.4 74.3 56.0 81.9
0.7 74.9 76.2 57.6 83.2
0.75 75.1 75.9 57.7 83.7

13 0.8 75.0 75.6 57.4 83.8
0.85 75.1 76.0 57.6 83.8
0.9 75.0 75.7 57.5 83.8
0.95 74.9 75.9 57.2 83.7
1.0 74.8 75.8 57.2 83.5

0.6 73.4 74.4 56.2 81.8
0.7 75.2 76.2 57.7 83.6
0.75 75.2 76.2 57.9 83.7

15 0.8 75.2 76.2 57.8 83.8
0.85 75.2 76.1 57.7 83.8
0.9 75.3 76.2 58.2 83.7
0.95 75.2 75.8 58.2 84.0
1.0 75.0 75.5 57.7 83.8

0.6 73.7 74.8 56.8 82.0
0.7 75.2 76.3 58.0 83.5
0.75 75.3 76.4 58.0 83.6

17 0.8 75.3 76.3 58.1 83.8
0.85 75.3 76.5 57.9 83.6
0.9 75.2 76.2 57.9 83.7
0.95 75.2 75.9 57.8 83.9
1.0 74.9 75.3 57.9 83.8

ity of our HNNP can be maximized. As introduced in the previous section, this
stage was implemented using an MLP network. The network was trained with
the fundamental back-propagation technique—gradient descent. This training
algorithm is relatively simple and straightforward and is the most traditional
way for the training of an MLP network. On the other hand, there are other
training algorithms which are superior and more efficient, such as the conju-
gate gradient (CoG) method [90][242], the Levenberge–Marqudt (LM) method
[191] etc. It might seem unreasonable for us to select a ‘naive’ rather than a
‘smart’ algorithm for our training. Let us explain the rationale beneath.

The LM method is a non-linear optimization algorithm which combines
the advantages of the steepest-descent and the Gauss–Newton methods: fast
convergence with the steepest-descent method when far from the minimum
and fast convergence with the Gauss–Newton method when close to the min-
imum. The operation of the algorithm is based on

H = JTJ, (8.28)
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Table 8.4. Prediction accuracies of the sequence–structure prediction with various
window sizes N and purity levels ρ: N ∈ {19, 21, 23}.

Window Purity Accuracies
size (N) level (ρ) Q3(%) Qα(%) Qβ(%) Qc(%)

0.6 73.8 74.8 57.0 82.0
0.7 75.2 76.1 57.9 83.8
0.75 75.4 76.5 58.2 83.7

19 0.8 75.3 76.4 58.6 83.5
0.85 75.4 76.5 58.1 83.6
0.9 75.3 76.5 57.9 83.6
0.95 75.3 75.8 58.4 83.9
1.0 75.0 76.1 57.7 83.4

0.6 73.7 74.7 56.7 81.8
0.7 75.4 76.4 58.6 83.5
0.75 75.3 76.3 58.1 83.7

21 0.8 75.5 76.7 58.5 83.5
0.85 75.6 76.6 58.3 83.9
0.9 75.3 76.3 57.4 84.0
0.95 75.1 75.8 58.5 83.5
1.0 74.9 75.8 58.2 83.1

0.6 73.8 74.6 56.7 82.3
0.7 75.3 76.1 58.1 83.9
0.75 75.3 76.6 57.8 83.6

23 0.8 75.4 76.8 58.4 83.4
0.85 75.5 76.6 58.3 83.8
0.9 75.4 76.5 57.9 83.7
0.95 75.2 75.9 58.3 83.7
1.0 74.9 76.0 57.9 83.2

where J is the Jacobian matrix that contains first derivatives of the net-
work errors with respect to the weights and biases. In other words, this ma-
trix has a size: number-of-weights-bias × number-of-patterns. In our problem,
the number of training patterns is around 2 × 105. If we were to need 1000
weights (which is quite moderate to our problem) to train these patterns,
the memory required to store the Jacobian matrix would be 2 × 105 × 103 ×
8 bytes (double precision) ≈ 1.6 GB. Such a demand for memory space is
beyond the computation resources available to us, not to mention the even
more space-demanding inner product between the Jacobian matrix and its
transpose. Hence, it is not feasible for us to use the LM method despite its
faster convergence.

The back-propagation algorithm searches for the minimum of the error
surface in the negative direction of the gradient. The CoG method, however,
applies a line search technique for which the search is guided by the conjugate
directions. The algorithm is especially suitable to an error minimization prob-
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Table 8.5. Prediction accuracies of the sequence-structure prediction with various
window size N and purity level ρ: N ∈ {25, 27}

Window Purity Accuracies
size (N) level (ρ) Q3(%) Qα(%) Qβ(%) Qc(%)

0.6 73.6 74.6 56.3 82.1
0.7 75.2 76.0 58.2 83.6
0.75 75.3 76.6 58.0 83.5

25 0.8 75.2 76.2 57.9 83.5
0.85 75.4 76.5 58.6 83.4
0.9 75.4 76.3 58.3 83.6
0.95 75.1 75.8 58.1 83.6
1.0 74.7 75.9 57.3 83.0

0.6 73.4 73.8 56.3 82.1
0.7 75.2 76.4 58.1 83.3
0.75 75.2 76.2 58.0 83.6

27 0.8 75.2 76.3 58.0 83.5
0.85 75.2 76.3 57.8 83.5
0.9 75.1 76.2 57.7 83.6
0.95 75.1 76.0 57.9 83.5
1.0 74.8 75.8 57.4 83.2

Table 8.6. Peak accuracies reached at each window size N : a summary

Window size (N) 11 13 15 17 19 21 23 25 27

Q3 74.8 75.1 75.3 75.3 75.4 75.6 75.4 75.4 75.2

lem with a quadratic error surface. In comparison to the back-propagation
method, the CoG method is generally faster in convergence and may help
us to escape from some local minima like saddle points. On the other hand,
the CoG method has to adopt the batch learning technique such that the
direction found is suitable for all training data: the newly found directions
have to be tested on all training data against the sum of the squared errors;
the method tries several times of searching until an appropriate direction has
been found; otherwise, a randomization of the search would be made and the
newly found direction is again evaluated for correctness, and a similar sce-
nario repeats until the minimum of the error surface is reached. Each trial of
search requires several goes (to check whether the sum of the squared errors is
reduced) through all training samples. Hence, the time consumed in the direc-
tion search may become significant when the data set used is extremely large
in scale and high in dimensionality. As a result, the overall convergence speed
might be lower despite the fact that the CoG method requires fewer steps to
reach the minimum error. And, our experiments using the CoG method seem
to match the above rationale. From our experiments, we have noticed that
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the method spent most of its time in searching for a new direction that min-
imized the error. As an example for the comparison of the convergence, the
back-propagation algorithm reached its minimum with a sum of the squared
errors of 0.23 using around one night of time, while, the CoG could only reach
a sum of the squared errors of 0.3 within the same amount of time. As a re-
sult, we believe that the back-propagation algorithm is more suitable for our
problem.

Strategy

Our second stage predictor is a simple yet large MLP network. The network is
simple as it is implemented with a standard three-layer feedforward network
and is trained using the fundamental back-propagation technique; the network
is also large in that several thousands of neurons are used in the hidden layer
and a large amount of data is used for the training.

To set up the network, an online learning method was adopted. That
is, the weights of the MLP neural network were updated using the back-
propagation technique at each time when an input pattern is present. When
all of the input patterns have been used, this is called one epoch of the training.
At each epoch, the training accuracy and the generalization performance of
the network are examined. The training continues if both the training accuracy
and the generalization performance are increasing. The training stops at the
optimal state where there was no further improvement of generalization with
the increase of training efficiency. To obtain the optimal performance, we also
need to inspect the predictions with different window size N . The strategy
adopted for the experiment is as follows:

1. Randomly start with a window size of 17. Set up the MLP network with
the output of the training data from the first stage.

2. Feed the testing data set into the network to carry out the prediction.
Record the prediction accuracy.

3. Increase the window size by two. Train the network and carry out the
prediction. Compute the prediction accuracy.

4. Repeat step 3 until a significant decrease in prediction accuracy is found.
5. Set the window size to 15. Train the network and carry out the prediction.

Compute the prediction accuracy.
6. Decrease the window size by 2. Train the network and carry out the pre-

diction. Compute the prediction accuracy.
7. Repeat step 6 until a significant decrease in the prediction accuracy is

found.
8. Finalize the ultimate secondary structure assignment on the testing data

set by selecting the best prediction.
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Results

Table 8.7 shows the experimental results for window size N varying from 11 to
25. From the table, the best accuracy Q3 of the T2T prediction is 76.8% when

Table 8.7. Prediction accuracies of the structure–structure prediction for window
size N = {11, 13, 15, 17, 19, 21, 23, 25}.

Window Accuracies
size (N) Q3(%) Qα(%) Qβ(%) Qc(%)

11 76.4 79.6 61.9 81.6
13 76.7 79.1 61.9 82.7
15 76.7 79.4 61.7 82.5
17 76.8 78.9 65.6 81.2
19 76.6 79.8 61.8 81.9
21 76.5 80.0 61.0 82.1
23 76.5 79.8 60.9 82.1
25 76.4 80.4 61.2 81.3

the window size N is 17. This is also the best final prediction accuracy that
our HNNP could reach. For the best prediction accuracy obtained, HNNP
reached the corresponding class accuracy Qα=78.9% for α-helix, Qβ=65.6%
for β-strand and Qc=81.2% for coil.

Table 8.8 shows the peak accuracies reached in the Q2T and the T2T
predictions. From this table, we can clearly see the contributions of the

Table 8.8. Contributions of the sequence–structure and the structure–structure
predictions to the final prediction accuracy.

Prediction Accuracies
stage Q3(%) Qα(%) Qβ(%) Qc(%)

Q2T 75.6 76.6 58.3 83.9
T2T 76.8 78.9 65.6 81.2

sequence–structure prediction and the structure–structure prediction to the
final prediction accuracy. The Q2T prediction, i.e., the RBF neural network, is
the crucial part of the PSSP problem and gives rise to a Q3 accuracy of 75.6%.
Our secondary structure prediction almost entirely relied on this stage of pre-
diction. Based on this prediction, the T2T prediction, i.e., the MLP neural
network, improves the raw prediction by 1.2%. Although this contribution is
minor in comparison to that of the RBF neural network, it is not negligible.
The improvement is a ‘reward’ received from studying the correlations hidden
in the protein secondary structures and the improvement is worth treasuring.
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From the table, we can also see the change of prediction accuracies for
each secondary structure class. The use of a structure–structure prediction
improved the prediction of the α-helix by 2.3% and the β-strand by 7.3%.
Obviously, the improvements were gained from correcting wrong predictions to
the coil state. On the other hand, the correction has also incorrectly predicted
some coil states to helix or strand states and this resulted in the drop of Qc.
Despite that, the correction by T2T is still successful as the overall accuracy
Q3 has been improved.

By comparing the prediction accuracies for different classes, we also see
that the prediction accuracies for helix, strand, and coil are quite different.
This difference, however, is a reflection of the class distribution of the training
data. And, this is relevant to the statistical analysis of the class distributions
of the training data. The analysis shows that the population ratio for helix,
strand, and coil classes in the training is roughly 3:2:4. The most populated
coil class achieves the highest prediction accuracy and the least populated
strand class achieves the lowest. The reason for such discrimination is due
to the discrimination in training. The coil class tends to ‘teach’ the learning
machine more frequently than the strand and helix classes. Hence, the machine
becomes more sensitive to the coil class and less sensitive to the other two
classes. As a result, such discrimination is reflected in the prediction accuracies
of the three classes.

Table 8.9 gives a more thorough evaluation of our final prediction
with additional information like segment overlap measure (SOV) and the
Matthews’ correlations (ρα, ρβ , ρc). The result is also compared with one
of the existing leading methods PSIPRED [164].

Table 8.9. More thorough performance evaluation of our HNNP and its comparison
with the PSIPRED method.

Method Per-Residue Matthews Segment
Q3(%) Qα(%) Qβ(%) Qc(%) ρα ρβ ρc SOV (%)

HNNP 76.8 78.9 65.6 81.2 0.72 0.61 0.59 73.6

PSIPRED 76.5 − − − − − − 73.5

From the table, we see that our HNNP outperforms the PSIPRED
method in both the per-residue accuracy and the segment overlap measure,
i.e., 76.8% VS. 76.5% for Q3 and 73.6% VS. 73.5% for SOV . Although the
improvement is not so significant, it at least shows that the HNNP system
is feasible for the PSSP problem. It is the first time that the RBF neural
network was applied to the PSSP problem. To train the RBF neural network,
a distance measure scheme WINDist which tried to address the importance
of neighboring residues was proposed. The overlapped clustering technique
was applied to enhance the noise rejection capability of the network. All the
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efforts made to pursue the accurate secondary structure prediction have been
rewarding, as the hybrid networking of the RBF neural network with the
MLP neural network has reached a comparable performance with the existing
leading method.
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Support Vector Machines for Prediction

In this chapter, we use support vector machines (SVMs) to deal with two
bioinformatics problems, i.e., cancer diagnosis based on gene expression data
and protein secondary structure prediction (PSSP) [57][58]. For the problem of
cancer diagnosis, the SVMs that we use achieved highly accurate results with
fewer genes compared to previously proposed approaches. For the problem
of PSSP, the SVMs achieved results comparable to those obtained by other
methods.

9.1 Multi-class SVM Classifiers

There are often more than two classes in a data set. Therefore, binary SVMs
are usually not enough to solve the whole problem. To solve multi-class clas-
sification problems, we should divide the whole problem into a number of
binary classification problems. Usually, there are two approaches [176]. One
is the ‘one against all’ scheme and the other is the ‘one against one’ scheme.

In the ‘one against all’ scheme, if there are N classes in the entire data
set, then N independent binary classifiers are built. Each binary classifier
is in charge of picking out one specific class from all the other classes. For
one specific pattern, all the N classifiers are used to make a prediction. The
pattern is categorized to the class that receives the strongest prediction. The
prediction strength is measured by the result of the decision function. In the
‘one against one’ scheme, there must be one (and only one) classifier taking
charge of the classification between any two classes. Therefore, for a data set
with S classes, S(S − 1)/2 binary classifiers are used. To get the ultimate
result, a voting scheme is used. For every input vector, all the classifiers give
their votes so there will be S(S−1)/2 votes; when all the classification (voting)
is finished, the vector is designated to the class getting the highest number of
votes. If one vector gets highest votes for more than one class, it is randomly
designated to one of them. In this chapter, we use ‘one against one’ policy.
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9.2 SVMs for Cancer Type Prediction

In recent years, gene-expression-based cancer classifiers have achieved good
results in classifying lymphoma [5], leukemia [121], breast cancer [202], liver
cancer [51], and so on.

Gene-expression-based cancer classification is challenging due to the fol-
lowing two properties of gene expression data. Firstly, gene expression data are
usually very high dimensional. The dimensionality usually ranges from several
thousand to over ten thousand. Secondly, gene expression data sets usually
contain relatively small numbers of samples, e.g., a few tens. If we treat this
pattern recognition problem with supervised machine learning approaches, we
need to deal with the shortage of training samples and high-dimensional input
features.

Recent approaches to this problem include artificial neural networks
[173], an evolutionary algorithm [75], nearest shrunken centroids [307], and a
graphical method [38]. Here, we use SVMs to solve this problem.

9.2.1 Gene Expression Data Sets

Three data sets are used in this chapter. One is the small round blue cell
tumors (SRBCTs) data set [173]. Another is the lymphoma data set [5]. The
last one is the leukemia data set [121]. The details of the data sets are shown
in Chap. 3.

We followed the normalization procedure used in [83]. Three steps were
taken, i.e., (a) setting a threshold with a floor of 100 and a ceiling of 16000,
that is, if a value is greater (smaller) than the ceiling (floor), this value
is replaced by the ceiling (floor); (b) filtering, leaving out the genes with
max/min ≤ 5 or (max − min) ≤ 500 (max and min refer to the maximum
and minimum of the expression values of a gene, respectively); (c) carrying
out logarithmic transformation with 10 as the base to all the expression val-
ues. 3571 genes survived after these three steps. Furthermore, the data were
standardized across experiments, i.e., subtracted by the mean and divided by
the standard deviation of each experiment.

9.2.2 A T-test-Based Gene Selection Approach

The t-test is a statistical method proposed by Welch [343] to measure how
large the difference is between the distributions of two groups of samples. If
a gene shows large distinctions between two groups, the gene is important
for classification of the two groups. To find the genes that contribute most to
classification, the t-test has been used in gene selection [320] in recent years.

Selecting important genes using the t-test involves several steps. In the
first step, a score based on the t-test (named t-score or TS) is calculated for
each gene. In the second step, all the genes are rearranged according to their
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TSs. The gene with the largest TS is put in the first place of the ranking list,
followed by the gene with the second largest TS, and so on.

Finally, only some top genes in the list are used for classification.
The standard t-test is applicable to measure the difference between only two
groups. Therefore, when the number of classes is more than two, we need to
modify the standard t-test. In this case, we use the t-test to measure the dif-
ference between one specific class and the centroid of all the classes. Hence,
the definition of the TS for gene i can be described as follows:

TSi = max{|xik − xi

mksi
|, k = 1, 2, ..., K}, (9.1)

xik =
∑

j∈Ck

xij/nk, (9.2)

xi =
n∑

j=1

xij/n, (9.3)

s2
i =

1
n − K

∑
k

∑
j∈Ck

(xij − xik)2, (9.4)

mk =
√

1/nk + 1/n, (9.5)

There are K classes. max{yk, k = 1, 2, ..., K} is the maximum of all yk. Ck

refers to class k that includes nk samples. xij is the expression value of gene
i in sample j. xik is the mean expression value in class k for gene i. n is the
total number of samples. xi is the general mean expression value for gene i.
si is the pooled within-class standard deviation for gene i.

9.3 Experimental Results

We applied the above gene selection approach and SVMs to process the SR-
BCT, the lymphoma, and the leukemia data sets.

9.3.1 Results for the SRBCT Data Set

In the SRBCT data set, we firstly ranked the importance of all the genes
with TSs. We picked out 60 of the genes with the largest TSs to perform
classification. The top 30 genes are listed in Table 9.1. We input these genes
one by one to the SVM classifier according to their ranks. That is, we first
input the gene ranked no. 1 in Table 9.1. Then, we trained the SVM classifier
with the training data and tested the SVM classifier with the testing data.
After that, we repeated the whole process with the top two genes in Table
9.1, and then the top three genes, and so on. Figure 9.1 shows the training
and the testing accuracies with respect to the number of genes used.
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Table 9.1. The 30 top genes selected by the t-test in the SRBCT data set.

Rank Gene ID Gene Description

1 810057 Cold shock domain protein A

2 784224 Fibroblast growth factor receptor 4

3 296448 Insulin-like growth factor 2 (somatomedin A)

4 770394 Fc fragment of IgG, receptor, transporter, alpha

5 207274 Human DNA for insulin-like growth factor II (IGF-2); exon 7
and additional ORF

6 244618 ESTs

7 234468 ESTs

8 325182 Cadherin 2, N-cadherin (neuronal)

9 212542 Homo sapiens mRNA; cDNA DKFZp586J2118 (from clone DK-
FZp586J2118)

10 377461 Caveolin 1, caveolae protein, 22kD

11 41591 Meningioma (disrupted in balanced translocation) 1

12 898073 Transmembrane protein

13 796258 Sarcoglycan, alpha (50kD dystrophin-associated glycoprotein)

14 204545 ESTs

15 563673 Antiquitin 1

16 44563 Growth associated protein 43

17 866702 Protein tyrosine phosphatase, non-receptor type 13 (APO-
1/CD95 (Fas)-associated phosphatase)

18 21652 Catenin (cadherin-associated protein), alpha 1 (102kD)

19 814260 Follicular lymphoma variant translocation 1

20 298062 troponin T2, cardiac

21 629896 Microtubule-associated protein 1B

22 43733 glycogenin 2

23 504791 Glutathione S-transferase A4

24 365826 Growth arrest-specific 1

25 1409509 troponin T1, skeletal, slow

26 1456900 Nil

27 1435003 Tumor necrosis factor, alpha-induced protein 6

28 308231 Homo sapiens incomplete cDNA for a mutated allele of a myosin
class I, myh-1c

29 241412 E74-like factor 1 (ets domain transcription factor)

30 1435862 Antigen identified by monoclonal antibodies 12E7, F21, and O13

In this data set, we used SVMs with RBF kernels. C and γ were set
as 80 and 0.005, respectively. This classifier obtained 100% training accuracy
and 100% testing accuracy using the top seven genes. In fact, the values of
C and γ have great impact on the classification accuracy. Figure 9.2 shows
the classification results with different values of γ. We also applied SVMs
with linear kernels (with kernel function K(X,Xi) = XTXi) and SVMs with
polynomial kernels (with kernel function K(X,Xi) = (XTXi + 1)p and order
p = 2) to the SRBCT data set. The results are shown in Fig. 9.3 and Fig.
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Fig. 9.1. The classification results versus the number of genes used for the SRBCT
data set: (a) the training accuracy; (b) the testing accuracy.

9.4. The SVMs with linear kernels and the SVMs with polynomial kernels
obtained 100% accuracy with seven and six genes, respectively. The similarity
of these results indicates that the SRBCT data set is separable for all the
three kinds of SVMs.

For the SRBCT data set, Khan et al. [173] 100% accurately classified
the four types of cancers with a linear artificial neural network by using 96
genes. Their results and our results of the linear SVMs both proved that the
classes in the SRBCT data set are linearly separable. In 2002, Tibshirani et
al. [307] also correctly classified the SRBCT data set with 43 genes by using a
method named nearest shrunken centroids. Deutsch [75] further reduced the
number of genes required for reliable classification to 12 with an evolutionary
algorithm. Compared with these previous results, the SVMs that we used can
achieve 100% accuracy with only six genes (for the polynomial kernel function
version, p = 2) or seven genes (for the linear and the RBF kernel function
versions). Table 9.2 summarizes this comparison.
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Fig. 9.2. The testing results of SVMs with RBF kernels and different values of γ
for the SRBCT data.

��

���

���

���

���

����

����

� �� �� �� �� ��

	
����������

�
�
�
�
�
�
�
�
�
	
	


�
�
	


Fig. 9.3. The testing results of the SVMs with linear kernels for the SRBCT data.

��

���

���

���

���

����

����

� �� �� �� �� ��

	
����������

�
�
�
�
�
�
�
�
�
	
	


�
�
	


Fig. 9.4. The testing results of the SVMs with polynomial kernels (p=2) for the
SRBCT data.
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Table 9.2. Comparison of the numbers of genes required by different methods to
achieve 100% classification accuracy.

Method Number of genes required

Linear MLP neural network [173] 96

Nearest shrunken centroids [307] 43

Evolutionary algorithm [75] 12

SVM (linear or RBF kernel function) 7

SVM (polynomial kernel function, p = 2) 6
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Fig. 9.5. The classification results versus the number of genes used for the lym-
phoma data set: (a) the training accuracy; (b) the testing accuracy.

9.3.2 Results for the Lymphoma Data Set

In the lymphoma data set, we selected the top 70 genes. The training and
testing accuracies with the 70 top genes are shown in Fig. 9.5. The classifiers
used here are also SVMs with RBF kernels. The best C and γ obtained are
equal to 20 and 0.1, respectively. The SVMs obtained 100% accuracy for both
the training and the testing data with only five genes.
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For the lymphoma data set, nearest shrunken centroids [308] used 48
genes to give 100% accurate classification. In comparison with this, the SVMs
that we used greatly reduced the number of genes required.
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Fig. 9.6. The classification results versus the number of genes used for the leukemia
data set: (a) the training accuracy; (b) the testing accuracy.

Results for the Leukemia Data Set

Alizadeh et al. [5] built a 50-gene classifier that made one error in the 34 testing
samples and, in addition, it could not give strong prediction to another three
samples. Nearest shrunken centroids made two errors among the 34 testing
samples with 21 genes [307]. As shown in Fig. 9.6, we used the SVMs with
RBF kernels with two errors for the testing data but with only 20 genes.
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9.4 SVMs for Protein Secondary Structure Prediction

In this section, we use SVMs to solve the PSSP problem. The background
information about PSSP has been introduced previously.

The data set used here was originally developed and used by Jones [164].
This data set can be obtained from the website (http://bioinf.cs.ucl.ac.uk/
psipred/). The data set contains a total of 2235 protein sequences for training
and 187 sequences for testing. All the sequences in this data set have been
processed by the online alignment searching tool PSI-Blast (http://www.ncbi.
nlm.nih.gov/BLAST/).

As mentioned above, we will conduct PSSP in two stages, i.e., Q2T
prediction and T2T prediction.

9.4.1 Q2T prediction

Parameter Tuning Strategy

For PSSP, there are three parameters, i.e., the window size N and SVM pa-
rameters (C, γ), to be tuned. N determines the span of the sliding window,
i.e., how many neighbors are to be included in the window. Here, we test four
different values for N , i.e., 11, 13, 15, and 17.

Searching for the optimal (C, γ) pair is also difficult because the data
set used here is extremely large. In [196], an optimal pair was found, (C, γ) =
(2, 0.125), for the PSSP problem with a much smaller data set (about 10
times smaller compared to the data set used here). Despite the difference of
data sizes, we find that their optimal pair also benefits our search as a proper
starting point. During our search, we change only one parameter at a time.
If the change (increase/decrease) leads to a higher accuracy, we continue to
perform a similar change (increase/decrease) next time; otherwise, we reverse
the change (decrease/increase). Both C and γ are tuned with this scheme.

Results

Tables 9.3, 9.4, 9.5, and 9.6 show the experimental results for various (C, γ)
pairs with the window size N ∈ {11, 13, 15, 17}, respectively. Here, Q3 stands
for the overall accuracy; Qα, Qβ , and Qc are the accuracies for α-helix, β-
strand, and coil, respectively.

From these tables, we can see that the optimal (C, γ) values for win-
dow size N ∈ {11, 13, 15, 17} are (1.5, 0.03), (2, 0.045), (2, 0.04), and (2, 0.03),
respectively. The corresponding Q3 accuracies achieved are 73.9%, 74.2%,
74.2%, and 74.1%, respectively. A window size of 13 or 15 seems to be the
optimal window size that could most efficiently capture the information hid-
den in the neighboring residues. The best accuracy achieved is 74.2%, with
N = 13 and (C, γ) = (2, 0.045), or N = 15 and (C, γ) = (2, 0.04).
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Table 9.3. Q2T prediction accuracies of the SVMs with different (C, γ) values:
window size N = 11.

C γ Accuracy
Q3(%) Qα(%) Qβ(%) Qc(%)

1 0.02 73.8 71.7 54.0 85.5

1 0.04 73.8 72.4 53.9 85.1

1.5 0.03 73.9 72.6 54.2 84.9

2 0.04 73.7 73.1 54.4 84.0

2 0.045 73.7 73.3 54.5 83.8

2.5 0.04 73.6 73.3 54.8 83.4

2.5 0.045 73.7 73.3 55.2 83.4

4 0.04 73.3 73.4 55.9 82.0

Table 9.4. Q2T prediction accuracies of the SVMs with different (C, γ) values:
window size N = 13.

C γ Accuracy
Q3(%) Qα(%) Qβ(%) Qc(%)

1 0.02 73.9 72.3 54.8 84.9
1.5 0.008 73.6 71.4 54.3 85.0
1.5 0.02 73.9 72.6 54.7 84.8
1.7 0.04 74.1 73.6 54.8 83.4
2 0.025 74.0 73.0 55.1 84.3
2 0.04 74.1 73.9 55.0 83.9
2 0.045 74.2 74.1 55.9 83.5
4 0.04 73.2 73.9 55.5 81.7

Table 9.5. Q2T prediction accuracies of the SVMs with different (C, γ) values:
window size N = 15.

C γ Accuracy
Q3(%) Qα(%) Qβ(%) Qc(%)

2 0.006 73.4 70.8 54.2 85.2

2 0.03 74.1 73.6 55.6 84.0

2 0.04 74.2 73.9 55.7 83.7

2 0.045 74.0 73.7 55.4 83.7

2 0.05 74.0 73.7 55.4 83.6

2 0.15 69.0 63.3 32.7 91.9

2.5 0.02 74.0 73.0 55.6 84.0

2.5 0.03 74.1 74.0 55.9 83.5

4 0.025 74.0 73.8 55.8 83.4
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Table 9.6. Q2T prediction accuracies of the SVMs with different (C, γ) values:
window size N = 17.

C γ Accuracy
Q3(%) Qα(%) Qβ(%) Qc(%)

1 0.125 70.0 63.6 36.0 91.3

2 0.03 74.1 73.5 56.2 83.7

2.5 0.001 71.3 68.1 52.4 83.5

2.5 0.02 74.0 68.1 52.4 83.5

2.5 0.04 74.0 75.0 55.8 83.1

The original model of SVMs was designed to perform binary classifi-
cation. To deal with multi-class problems, one usually needs to decompose a
large classification problem into a number of binary classification problems.
We used the ‘one-against-one’ scheme [147] in this chapter.

In 2001, Crammer and Singer proposed a direct method to build
multi-class SVMs [67]. We also applied such a multi-class SVM to PSSP
(http://www.csie.ntu.edu.tw/ cjlin/bsvm/). The results are shown in Table
9.7. Through comparing Table 9.5 and Table 9.7, we found that the multi-
class SVMs using Crammer and Singer’s scheme [67] and the group of the
binary SVMs using ‘one-against-one’ scheme [147] obtained similar results.

Table 9.7. Q2T prediction accuracies of the multi-class classifier of BSVM with
different (C, γ) values: window size N = 15.

C γ Accuracy
Q3(%) Qα(%) Qβ(%) Qc(%)

2 0.04 74.18 73.90 56.39 84.18

2 0.05 74.02 73.68 56.09 83.39

2.5 0.03 74.20 73.95 56.85 83.22

2.5 0.035 74.06 73.93 56.70 82.99

3.0 0.35 73.77 73.88 56.55 82.44

9.4.2 T2T prediction

The T2T prediction uses the output of the Q2T prediction as its input. In T2T
prediction, we use the same SVMs as the ones we use in the Q2T prediction.
Therefore, we also adopt the same parameter tuning strategy as in the Q2T
prediction.
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Table 9.8. The T2T prediction accuracies for window sizes N = 15, 17, and 19.

Window size C γ Accuracy
(N) Q3(%) Qα(%) Qβ(%) Qc(%)

15 1 2−5 72.6 77.9 60.8 74.3
17 1 2−4 72.6 78.0 60.4 74.5
19 1 2−6 72.8 78.2 60.1 74.9

Results

Table 9.8 shows the best accuracies reached for window size N ∈ {15, 17, 19}
with the corresponding C and γ values. From Table 9.8, it is unexpectedly
observed that the structure–structure prediction has actually degraded the
prediction performance. A close look at the accuracies for each secondary
structure class reveals that the prediction for the coils becomes much less ac-
curate. In comparison to the early results (Tables 9.3, 9.4, 9.5, and 9.6) in
the first stage, the Qc accuracy dropped from 84% to 75%. By sacrificing the
accuracy for coils, the predictions for the other two secondary structures im-
proved. However, because coils have a much larger population than the other
two kinds of secondary structures, the overall 3-state accuracy Q3 decreased.

9.5 Summary

For the problem of cancer diagnosis based on microarray data, the SVMs used
outperformed most of the previously proposed methods in terms of the number
of genes required and the accuracy. Therefore, it is concluded that the SVMs
can not only make highly reliable prediction, but also can reduce redundant
genes. For the PSSP problem, the SVMs also obtained results comparable
with those obtained by other approaches.
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Rule Extraction from Support Vector Machines

It is a challenging task to obtain explicit knowledge from the solutions of the
support vector machine (SVM) for explaining classification decisions. This
chapter exploits the fact that the decisions from a non-linear SVM could be
decoded into linguistic rules based on the information provided by support
vectors and its decision function.

The support vectors of an SVM classifier are sparse representation of
the training data. Support vectors are located near the decision boundary.
These characteristics of support vectors motivate us to extract rectangular
rules based on support vectors and decision functions. Given a support vector
of a certain class, cross points between each line, which is extended from
the support vector along each axis, and the SVM decision hyper-curve are
searched first. A hyper-rectangular rule is derived from these cross points.
The hyper-rectangle is tuned by a tuning phase in order to exclude those out-
class data points. Finally, redundant rules are merged to produce a compact
rule set. Simultaneously, important attributes could be highlighted in the
extracted rules. Rule extraction results from our proposed method could follow
decisions of SVM classifiers very well. Comparisons between our method and
other rule extraction methods are also carried out on several benchmark data
sets. Higher rule accuracy is obtained in our method with a fewer number of
premises in each rule.

10.1 Introduction

Due to their good generalization performance in solving classification and
regression problems, support vector machines (SVMs) [39][40][163] have at-
tracted great interest in recent years. Successful applications of SVMs have
been reported in various areas, including but not limited to areas in communi-
cation [122], time-series prediction [119], and bioinformatics [34][222]. In many
applications, it is desirable to know not only the classification decisions but
also what leads to the decisions. However, SVMs offer little insight into the
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reasons why SVM classifiers have made such final decisions. It is desirable to
develop a rule extraction algorithm to reveal knowledge embedded in trained
SVMs and represent the classification decisions based on SVM classification
results by linguistic rules.

In data mining applications, the task of rule extraction has been widely
explored for representing relationship between input attributes and class labels
from various classifiers and regression models, such as neural networks (NNs),
decision trees, and support vector machines [28][102][111][154][200][285][298].
Though SVMs attracted much attention in various areas in recent years, there
lacks robust SVM rule extraction techniques in the literature. Rule extraction
from SVMs can facilitate data mining clients in many aspects:

• Increase perceptibility from SVM decisions.
• Refine initial domain knowledge, for example find irrelevant attributes

which do not play a role in making decisions.
• Explain hidden data concepts by linguistic rules to clients.
• Find active attributes in data sets.

Nunez et al. [231] used clustering to obtain prototype vectors which
are centers of clusters. The prototype vectors and support vectors are then
used to determine boundaries of rules. The prototype vector of each cluster is
used as the center of the ellipsoid that defines a rule. In a cluster region, the
support vector which is farthest from the cluster’s prototype vector is chosen.
The straight line between these two points is used as the first axis of the
ellipsoid. Other parameters of the ellipsoid are solved by simple geometry. For
the generated ellipsoid, a negative partition test result leads to a rule. The
ellipsoid region will be partitioned if its partition test result is positive. The
partitioned subregions will be subjected to a partition test again. A similar
procedure is followed to generate rules with hyper-rectangular boundaries in
[231].

However, according to the algorithm in [231] generating a rule only de-
pends on prototypes and support vectors, which may lead to low rule accuracy
because common data points of another class may not be detected and rejected
from the rule region by this method. In addition, important information of
SVMs provided by decision boundaries are not utilized. And, the determi-
nation of boundaries of rules becomes complicated with the increase in data
dimensionality because it cannot be solved efficiently by just using a simple
geometry. In these clustering approaches, both the number and the accuracy
of rules are affected significantly by the choice of the clustering algorithm.

In this chapter, a rule extraction algorithm RulExSVM (rule extrac-
tion from support vector machines), first proposed in [108], is described for
revealing the relationships between attributes and class labels through linguis-
tic rules. The extracted rules are with hyper-rectangular boundaries and in
IF–THEN forms. Each rule corresponds to a support vector and is generated
directly based on the relationship between the support vector and the deci-
sion function. Given a support vector of a certain class, cross points between
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lines, along each axis, extended from the support vector and SVM decision
hyper-curves are found first. A hyper-rectangular rule is derived from these
cross points. Out-class data points which do not have the same class label
as the support vector are detected. The hyper-rectangular rule is tuned by a
tuning phase in order to exclude those out-class data points. Finally, rules are
merged to obtain a more compact rule set.

C in Eq. (1.30) is the regularization constant. Support vector i with
αi = C falls in the region between two separating hyper-curves. There might
be support vectors between two separating hyper-curves. It is noted that those
support vectors, such as support vectors I and J shown in Fig. 10.1, which
lie between two separating hyper-curves, are not used for generating rules
because they might not be correctly classified.

Many methods have been proposed to solve the optimization problem
[279][326] for obtaining SVM classifiers. Based on the solution of the opti-
mization problem, in the classification phase, a data point x is classified by
computing the sign of the decision function:

f(x) =
Ns∑
i=1

αiyiK(si,x) + b. (10.1)

In order to distinguish support vectors from other data samples, we use si to
represent the ith support vector. Actually, si is also a data sample. Ns is the
number of support vectors.
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Fig. 10.1. Separating hyper-curves in the original space, support vectors, and the
decision function. ( c© 2005 IEEE) We thank the IEEE for allowing the reproduction
of this figure, first appeared in [108].
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10.2 Rule Extraction

In this section, the rule extraction procedure will be described. This rule
extraction method can extract rules from multi-class data sets. Based on the
trained SVM classifier, support vectors of class 1 are used for generating rules
for class 1. The rule extraction method could be easily extended to multi-
class problems. One-against-all policy is employed for classifying multi-class
data sets in SVM training. In the rule extraction algorithm, the current class
processed is referred to as class 1. All the other classes are referred to as class
2.

Support vectors are the skeleton of the training data set. If data points
except for support vectors are removed from the training set, the same sep-
arating hyper-curves could be obtained in the retrained SVM. Since support
vectors can support separating hyper-curves, we start from each support vec-
tor to extract rules with hyper-rectangular boundaries.

For illustrating how to obtain initial rules based on the information of
an SVM classifier, an example is considered in the two-dimensional space. In
Fig. 10.2, black points are the support vectors of class 1 and white points
are the support vectors of class 2. For each axis, a line, parallelling the axis,
starting from a support vector of class 1 can be extended unlimitedly in two
directions. The cross points between the line and the decision boundary can
be calculated. Take for example, for support vectors A and C, cross points
between the extended lines and the decision boundary are shown in Fig. 10.2.
Based on these cross points, the initial boundaries of the hyper-rectangular
rules can be obtained and are shown as rectangles with dashed lines in Fig.
10.3 (a) and (b) for support vectors A and C respectively.

There are three phases in the RulExSVM, i.e., the initial phase, the
tuning phase, and the pruning phase. In the initial phase, given a support
vector of class 1, a rule with the hyper-rectangular boundary is generated
based on the information provided by the support vector and the decision
boundary. In the tuning phase, the initial rule is tuned towards the direction
improving the rule accuracy for classifying data. The three phases are stated
as follows.

10.2.1 The Initial Phase for Generating Rules

In this section, we describe how to calculate initial hyper-rectangular rules
for a two-class data set in detail. The following notations are used. n is the
dimension of the data set. A1 is the support vector set of class 1. A2 is the
support vector set of class 2. N1 is the number of support vectors of class 1.
N2 is the number of support vectors of class 2. Ns = N1 + N2 is the total
number of support vectors. sm = {sm1, sm2, ..., smn} is the mth support vector
of class 1. x = {x1, x2, ..., xn} is a pattern of data. Note that all attributes of
data points are normalized to lie in [0, 1].
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Fig. 10.2. Cross points. ( c© 2005 IEEE) We thank the IEEE for allowing the
reproduction of this figure, first appeared in [108].

The rule with the hyper-rectangular boundary derived from support
vector sm of class 1 can be represented by:

{smi + λ2i ≥ xi ≥ smi − λ1i, i = 1, ..., n}, (10.2)

where 1 ≥ λpi ≥ 0, p = {1, 2}.
Let:

Lo(i) = smi − λ1i (10.3)

and
Ho(i) = smi + λ2i (10.4)

Here Ho(i) and Lo(i) give the upper limit and the lower limit of the hyper-
rectangular rule along the ith dimension, respectively. Based on the decision
function f(x) which distinguishes class 1 from class 2, Lo and Ho are initially
determined in the procedure of searching rules.

Given the trained SVM, the rule based on support vector sm can be
generated as follows:

1. Set l = 1, (l refers to dimension).
2. Calculate xl subject to f(x) = 0 and xj = smj (j = 1, ..., n and j �= l) by

the Newton’s method [64][252].
3. Determine Lo and Ho according to the solutions of the problem in step

2. The number of solutions of xl may be different under different data
distributions:
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a) If there is no solution, i.e., there is no cross point between the line
extended from sm along dimension l and the decision boundary, then
Lo(l) = 0, Ho(l) = 1.

b) If there is one solution:
If sml ≥ xl, Lo(l) = xl and Ho(l) = 1, else Lo(l) = 0 and Ho(l) = xl.

c) If there are two solutions xl1 and xl2 (xl1 ≤ xl2) : Lo(l) = xl1 and
Ho(l) = xl2.

d) If there are more than two solutions, the nearest neighbors xl1 and xl2

of smj are chosen from the solutions under the conditions xl1 ≤ smj

and xl2 ≥ smj and the data points {x|xj = smj , j = 1, ..., n, j �=
l, xl1 ≤ xl ≤ xl2} have the same class label as the support vector sm:
Lo(l) = xl1 and Ho(l) = xl2.

4. l = l + 1, if l < n, go to step 2, else end.

10.2.2 The Tuning Phase for Rules

The tuning phase of the RulExSVM method aims at tuning the initial rules
for improving rule accuracy by the removal of outliers. Whenever a pattern x
of class 2 falls into the region of a rule of class 1, the rule is tuned to remove
the outlier from the region.

In this rule extraction method, rectangular rules are extracted by split-
ting the data space into rectangles. It is expected to obtain rules covering
as large a data space as possible. For the purpose of generating a compact
rule set, rules with larger volumes are preferred. In an n-dimensional data
space, the outlier is rejected by chopping the rule along a certain dimension
in which the volume of the hyper-rectangular rule is larger than those along
other dimensions. The detailed steps of RulExSVM are as follows:

1. For a two-class data set, we train a support vector machine first.
2. Choose a support vector from A1 which is the support vector set of class 1

to calculate the initial hyper-rectangular rule region based on the trained
support vector machine. Details can be found in Sect. 10.2.1.

3. Search all samples of class 2 which are included in the rule region. Assume
that there are K samples of class 2 in the rule region. We refer to K
samples as a sample subset Q. Randomly choose a sample from Q.

4. Calculate distances from the sample to boundaries of the hyper-rectangular
rule along each dimension.

5. Remove the sample from the rectangle by shrinking the hyper-rectangular
rule along the axis which can maintain the maximum volume of the hyper-
rectangle.

6. Check the samples of class 2 left in the new rule region; if K > 0, randomly
choose a sample from Q, go to Step 4, else go to the next step.

7. Remove the support vector from A1. If A1 is not empty, go to step 2, else
end.
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10.2.3 The Pruning Phase for Rules

As the final phase of the RulExSVM method, the pruning phase aims at
simplifying the rule set by removing redundant rules. Rules which classify
data patterns from different classes may be overlapped with each other. If a
rule is totally overlapped by another rule, the rule would be considered as a
redundant one. Then, a pruning measure is taken to remove redundant rules
from the rule set.

In order to remove redundant rules, we do the following: (1) find the
patterns falling into each rule region, (2) if the set of patterns in a certain
rule region is a subset of patterns covered by another rule, the rule is removed
from the rule set, (3) repeat the pruning to remove all redundant rules.

Rule merging is another pruning task, which can also help to simplify
the rule set, however, we will not discuss rule merging in this book.

10.3 Illustrative Examples

In this section, we will illustrate the rule extraction method by two data
sets. The first data set is a binary-class data set with discrete attributes. The
second data set is a multiple-class data set with continuous attributes. For
a multi-class data set with M classes, rule extraction is carried out for M
binary-class data sets, i.e., one-against-all policy is employed for extracting
rules for each class. When training SVM classifiers and extracting rules, we
normalized all the attributes to the interval [0, 1]. In the expression of rules,
the attributes will be transformed to their original ranges.

10.3.1 Example 1 — Breast Cancer Data Set

This data set have discrete attributes in the interval [1, 10].
RulExSVM extracts rules based on trained SVM classifiers. The para-

meters of SVM {σ,C} are determined using 5-fold cross-validation.
To determine a rule, we first choose a support vector sm of class 1 ran-

domly. Newton’s method is employed to find the initial rule derived from this
support vector. In order to reduce the calculation time of Newton’s method
when searching for the cross points between lines extending from the selected
support vector along each axis and the decision boundary of the support vec-
tor machine, 11 values {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} are taken
from the interval [0, 1] along axis l. x = {x1, x2, ..., xn}. The values of f(x)
are then calculated subject to {xj = smj} (j = 1, ..., n and j �= l). xl equals
each of the 11 values. Define f̃(xl) := f(x). In the 11 results of f̃(xl), two
neighbors {x1, x2} whose signs are different are located. Let xl = (x1 + x2)/2.
If the signs of all of f̃(xl)’s are the same, xl equals x, which corresponds to
the smallest f̃(x). This xl serves as the starting point for Newton’s method.
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In our algorithm, if |f̃(xl)| ≤ 0.001, then the solutions of f̃(xl) = 0 are con-
sidered found. If there are no cross points (no solutions) along the axis, the
rule interval is [0, 1] along the axis.

For the Breast cancer data set, we obtain seven rules. Due to space
limitation, we only show the first two rules here:

Rule 1:
IF Attribute 1 ∈ {1, 2, 3}
AND Attribute 3 ∈ {1, 2, 3, 4}
AND Attribute 4 ∈ {1, 2, 3, 4}
AND Attribute 8 ∈ {1, 2, 3, 4}
THEN class label is Benign.
Rule 2:
IF Attribute 1 ∈ {1, 2, 3, 4, 5, 6}
AND Attribute 3 ∈ {1, 2, 3}
AND Attribute 8 ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10}
AND Attribute 9 ∈ {2, 3, 4, 5, 6, 7, 8}
THEN class label is Benign.
...
Default rule:
Else class label is Malignant.
In the RulExSVM method, a set of rules is obtained for the breast can-

cer data set and the rule accuracy for classification is 97.51%. These rules will
describe the Benign cases, and the Malignant cases are default. The charac-
teristics of the Malignant cases are considered as the ones opposite to those
presented in the rule set above.

Compared with the rule extraction results in [286], in which on average
2.9 rules were generated with accuracy 94.04%, higher rule accuracy is ob-
tained by our method though the number of rules is slightly higher. The rule
accuracy is also higher than the result in our previous work based on radial
basis function (RBF) neural networks [102][104]. It is also observed in our rule
set above that the rule accuracy is obtained without the contribution of some
attributes, such as attribute 5. When we use the attributes presented in the
rule set as the inputs to an SVM, we can obtain the same classification result
as that obtained by using the whole original attributes as inputs to the SVM.
Some attributes may be not active in determining class labels. This observa-
tion is important especially in medical diagnosis. Thus, doctors can pay more
attention to those active attributes for analyzing causes and symptoms of a
disease. This point is an advantage of rule decision over SVM decision though
the accuracy of black-box SVM classifiers is usually higher than the accuracy
of rules.

10.3.2 Example 2 — Iris Data Set

The second data set used for illustrating the rule extraction method is the
Iris data set. Three rules are obtained by our RulExSVM. Only attribute 3
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and attribute 4 are present in our rule set. Four other rule sets obtained in
[28][145][212][231] could be checked in corresponding papers. Compared with
the rules extracted from support vector machines [231], higher rule accuracy
is obtained in our RulExSVM method with a fewer number of premises in
each rule. In [212], rules were extracted for the Iris data set based on radial
basis function (RBF) neural networks. The accuracy of the rules in [212] is
lower than ours and with all attributes used in the rule set. In [145], three
rules were extracted for the Iris data set with 97.33% accuracy and a hyper-
plane decision boundary. In the RulExSVM method, the same number of
rules and better rule accuracy are obtained, and the rules extracted have a
hyper-rectangular decision boundary. The accuracy of our rules is better than
the accuracy of the rules extracted from MLP (multi-layer perceptron) neural
networks in [28]. In addition, through the rules extracted by RulExSVM, it
is observed that it may not affect the concept of the Iris data set with the
removal of attributes 1 and 2.

10.4 Experimental Results

Data sets Chess, Mushroom, Iris, Pima-diabete, Breast cancer, and Wine are
used in our experiments. All of these data sets can be obtained from the UCI
database [223]. The characteristics of the data sets used here are shown in
Table 10.1. Discrete and numerical attributes can be found in the data sets.

In Table 10.2, the number of support vectors in SVM classifiers for sep-
arating each class from other classes is shown together with the classification
accuracy based on trained SVM classifiers. The information of rules extracted
are shown in Table 10.3. The number of premises of each rule is calculated on
average. In this table, the fidelity shows that rules extracted match the SVM
classifier well.

In the experiments, we use only support vectors for generating initial
rules and tuning rules by considering training data points. In Table 10.4,
time (seconds) consumed for training SVM classifiers and extracting rules is
presented. The rule extraction program is written in matlab. The computer
has a 2.53 GHz CPU.

We compared our rule extraction algorithm with other rule extraction
algorithms. For the Pima diabete data set, we obtained rules with the accu-
racy of 80.29% which is higher than rules in [145] in which rules with 76.3%
accuracy were extracted.

In [286], rules were obtained for the Mushroom data set with two rules,
and 98.12% accuracy. For the Mushroom data set, seven rules with 100%
accuracy are obtained by our RulExSVM method.
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Table 10.1. Characteristics of data sets used (num-attri: numeric attributes, dis-
attri: discrete attributes).

Data Patterns Num- Dis- Classes
sets attri attri

Chess 3196 0 36 2

Mush-
room 8124 0 22 2

Iris 150 4 0 3

Wine 178 13 0 3

Pima
diabete 768 8 0 3

Breast
cancer 683 0 9 2

Table 10.2. SVM classification results.

Data SVM Number of
sets accuracy support vectors

Chess 98.75% 762

Mushroom 100% 250

Iris 97.5% 30

Wine 99.3% 39

Pima diabete 78.83% 207

Breast cancer 97.8% 66

Table 10.3. Comparison of classification results from SVM classifiers and rules.

Data Rule Rules Premises Fidelity
sets accuracy /per rule

Chess 99% 12 2.33 99.42%

Mush-
room 100% 7 3.33 100%

Iris 98% 3 1.33 99.19%

Wine 99.3% 6 4.3 99.3%

Pima
diabete 80.29% 16 4.46 98.21%

Breast
cancer 97.51% 7 5.3 99.27%

10.5 Summary

After an SVM classifier is obtained based on the training data set, the rule-
extraction algorithm RulExSVM is implemented in three phases: first, initial
rules are determined based on the trained SVM classifier by calculating cross
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Table 10.4. SVM training time and time spent on rule extraction.

Data sets SVM training Rule extraction
time (s) time (s)

Chess 5.43 1419.3

Mushroom 2.56 895.43

Iris 0.56 1.14

Wine 0.32 49.6

Pima diabete 0.46 201.968

Breast cancer 0.11 128.7

points between support vectors and the decision boundary along each axis;
second, rules are tuned based on the criterion that excludes data points of
other classes from the rule region and keeps the rule region as large as possible;
third, the rules which are overlapped completely by other rules are pruned. In
this book, we only explore rule extraction from SVM classifiers with non-linear
RBF kernel functions. The rule extraction procedure reported here could be
easily extended to SVMs with any other type of kernel functions.

It is shown in Table 10.4 that the computational time of rule extraction
is far higher than the time for SVM training. For large-scale data, training
time of SVM is a big problem which makes on-line processing of large-scale
data impractical. A solution to this problem can be parallel computing. In
addition, writing the rule extraction program in C language and improving
the efficiency of the algorithm are alternative ways to reduce the time spent
on rule extraction.

In the rectangular rules extracted by the described algorithm, impor-
tant attributes are highlighted since unimportant rules are not present or
scarce in the rule set. Rule extraction results from the RulExSVM method
shows that rules follow SVM decisions very well. Comparisons between our
method and other rule extraction methods show that higher rule accuracy is
obtained in this method with a fewer number of premises in each rule.
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Fig. 10.3. (a) Initial rule generated based on support vector A and (b) initial
rule generated based on support vector C. ( c© 2005 IEEE) We thank the IEEE for
allowing the reproduction of this figure, first appeared in [108].



glossary names

ALL acute lymphoblastic leukemia
AML acute myeloid leukemia
ANN artificial neural network
ANN-DT artificial neural-network decision tree algorithm
AR autoregression
ART adaptive resonance theory
BP back-propagation algorithm
CART classification and regression tree
CG compatibility grade
CGA clustering genetic algorithm
CLL chronicle lymphocytic leukaemia
COA centroid of Area
CoG conjugate Gradient
CSNNs cost-sensitive neural networks
CSBP cost-sensitive back-propagation
DLBCL diffuse large B-cell lymphoma
DDR data dimensionality reduction
DTB discrete-time backpropagation neural network
EWS ewing family of tumors
FAM fuzzy associative memories
FGA fuzzy GA
FL follicular lymphoma
FNNs fuzzy neural networks
GA genetic algorithms
HCC hepatocellular carcinoma
HMM Hidden Markov Model
HNNP hybrid Neural Network Predictor
IIR infinite impulse response
LDA linear discriminant analysis
LDC linear discriminant classifier
LGA local genetic algorithm



LLS linear least square
LM levenberge-marqudt
LMS least mean square
LOG logistic classifier
LVQ learning vector quantization
MF membership function
MIFS mutual information based feature selection
MLP multi-layer perceptron
MLD mean local density
MOM mean of maximum
MSE mean squared error
NB neuroblastoma
NHL non-hodgkin lymphoma
NMSE normalized mean squared error
OLS orthogonal least square learning algorithm
PCA principal components analysis
PCs principal components
PDF probability density function
PSSM position-specific scoring matrix
PSSP protein secondary structure prediction
QDC quadratic discriminant classifier
Q2T sequence-structure
RBF radial basis function
RMS rhabdomyosarcoma
SBP standard back- propagation
SBS sequential backward se- lection
SCM separability and correlation measure
SFS sequential forward selection
SOV segment overlap measure
SRBCTs small round blue cell tumors
SVMs support vector machines
T2T structure-structure
TDNN the time delay neural network
TDNNGF time delay neural network with global feedback
TSs t-scores
VIA validity interval analysis
WD wavelet decomposition
WP-MLP wavelet packet MLP
WA weighted accuracy
WTA winner-take-All
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Rules extracted for the Iris data set

Rules extracted by McGarry [212] using RBF networks for the Iris data set
with an accuracy of 40% for the test data set:

Rule 1
IF the sepal length is within the interval (4.4, 5.7)
AND the sepal width is within the interval (2.9, 4.4)
AND the petal length is within the interval (1.3, 1.5)
AND the petal width is within the interval (0.2, 0.4)
THEN the class label is Setosa.
Rule 2
IF the sepal length is within the interval (4.9, 6.9)
AND the sepal width is within the interval (2.0, 3.1)
AND the petal length is within the interval (3.5, 5.0)
AND the petal width is within the interval (0.4, 1.0)
THEN the class label is Versicolor
Rule 3
IF the sepal length is within the interval (5.8 , 7.2)
AND the sepal width is within the interval (2.8 , 3.1)
AND the petal length is within the interval (4.5 , 5.8)
AND the petal width is within the interval (1.5, 1.7)
THEN the class label is Virginica

The rules extracted by Bologna et al. [28] (As is the sepal area and Ap is the
petal area):

Rule 1
If {As − 3.98Ap ≥ 2.34}
and {11.21 ≤ As − 5.56Ap ≤ 21.87 or Ap − 0.18As = 1.47}
then the class label is Setosa.



Rule 2
If {−0.23 ≤ Ap−0.25As ≤ 3.45 or Ap−0.25As = 3.89 or Ap−0.25As =
4.09}
and {1.18 ≤ Ap−0.18As ≤ 5.22 or Ap−0.18As = 0.83 or Ap−0.18As =
1.01}
then the class label is Versicolor.
Rule 3
If {Ap − 0.25As ≥ 3.85 or Ap − 0.25As = 3.21}
and {Ap − 0.18As ≥ 4.48}
then the class label is Virginica.

The rules extracted by Hruschka and Ebecken [145] (a3: petal length, a4: petal
width):

Rule 1
If (a3 < 2.804) then the class label is Setosa.
Rule 2
If (a3 > 2.804) and (a3 < 4.974) and (a4 < 1.678) then the class label
is Versicolor.
Default rule: the class label is Virginica.
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